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ABSTRACT
Urban planning is increasingly data driven, yet the challenge
of designing with data at a city scale and remaining sensitive
to the impact at a human scale is as important today as it was
for Jane Jacobs. We address this challenge with Urban Mosaic,
a tool for exploring the urban fabric through a spatially and
temporally dense data set of 7.7 million street-level images
from New York City, captured over the period of a year. Work-
ing in collaboration with professional practitioners, we use
Urban Mosaic to investigate questions of accessibility and
mobility, and preservation and retrofitting. In doing so, we
demonstrate how tools such as this might provide a bridge
between the city and the street, by supporting activities such
as visual comparison of geographically distant neighborhoods,
and temporal analysis of unfolding urban development.

Author Keywords
Urban planning; Interactive visualization; Data analysis;
Urban data

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Visual analytics; Visualization toolkits;

"A sense of place is built up, in the end, from many little things
too, some so small people take them for granted, and yet the
lack of them takes the flavor out of the city."

(Jane Jacobs, Downtown is for People)

INTRODUCTION
For those of us living in or visiting the world’s major cities,
their dynamism and complexity are immediately apparent. Yet
urban planners and designers must work in a context where
any single intervention, perhaps aimed at altering just one
aspect, can have a wide ranging impact on a variety of in-
terrelated components [12], affecting things at both a macro
city scale and a micro human scale. Examples of changes at
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a city scale include, suburbanization, economic deconcentra-
tion, modification to transport infrastructure, rezoning and/or
gentrification of neighborhoods, and major renewal projects.
Examples of changes at a human scale, on the other hand,
are reflected in the city’s urban fabric, and include aspects
that make a city livable, encourage walking, and contribute to
the perception of safety; in other words affect the day to day
lives of its inhabitants. This might be manifested in lighting,
shadow, sky exposure, open-front shops, the details of building
facades, etc. [32].

Responding to these challenges at the city scale, planners and
designers have been aided by a rapid growth in data from
urban environments, and so are able to turn to computational
methods and large-scale data analysis, which increase under-
standing by quantifying different aspects of the city (e.g., [36,
13, 14, 29, 70, 67, 48]). However, while sensitivity to the im-
pact of change at a human scale remains as important today as
it was for Jane Jacobs and others in the 1950s and 1960s [47],
analyses of suitable data, which emphasize qualitative, visual
details, are often difficult and time-consuming to perform. Al-
though there is an increasing availability of street-view images,
which support a degree of virtual assessment and auditing of
the built environment, their distribution is often temporally
sparse and so analysis is limited.

This paper introduces Urban Mosaic, a tool for visually
exploring the urban fabric. It responds to the challenges
practitioners face by employing a newly available spatially
and temporally dense data set of street-level images from
New York City (NYC) Urban Mosaic is a visual exploration
system designed to help practitioners in urban planning and
design gain insight into the human scale impact of changes
in the urban fabric. It utilizes state-of-the-art computer vi-
sion techniques for image similarity search and clustering,
together with efficient spatio-temporal selection and aggre-
gation over the image metadata to visually explore and map
this image data set. It further allows the analysis to be aug-
mented using spatio-temporal urban data from a variety of
other sources (e.g., census, transport, crime, weather, housing
market, zoning, noise complaints). The image data set used
in this work contains 7.7 million images captured in the Man-
hattan and Brooklyn boroughs between April 2016 and April
2017 using car-mounted cameras. Urban Mosaic has been
developed as a collaboration between researchers in urban
planning, visual analytics, and HCI. We include a detailed
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description of system features as a way to offer necessary
background to our approach. In order to better understand
the needs and potential use cases of practitioners, we under-
took a requirements gathering process that included: repre-
sentatives of Kohn Pedersen Fox (KPF), a major architectural
practice specializing in data-driven urban design and urban
data analytics; Draw Brooklyn, a practice run by the former
Chief Urban Designer of NYC; and an occupational therapist
specializing in urban accessibility for older people. We refer
to our interactions with these practitioners, which include for-
mative evaluation sessions, throughout the paper to offer the
perspective of potential future users.

Contributions. The work reported in this paper has both
practical and theoretical implications, and contributes to HCI
knowledge in two ways. From a theoretical perspective, we
demonstrate the potential for images from large-scale street-
view data sets to help bridge data-driven urban planning and
design at the city scale and at the human scale. From a practical
perspective, we present a tool that enables professionals to
combine quantitative spatio-temporal urban data sets with
qualitative spatio-temporal data sets of urban images, and use
these to solve the real problems they identified.

BACKGROUND
The built environment’s impact on public health, social well-
being and quality of life has been demonstrated with regard
to levels of physical activity [31, 88], social inclusion [83,
17], social capital [74], willingness to walk [43], perceptions
of safety [6], pedestrian fatalities [73], impact on pedestrians
with special needs [28], and risk of cardiovascular or respi-
ratory diseases [77, 24]. Features such as wide sidewalks,
greenery, townhouse stoops, street-level activity, and ground
floor properties with detail and windows, all contribute to a
vibrant street life that attracts more people to public spaces
and increases safety. This was Jane Jacobs’ now famous “eyes
on the streets” theory [40], which has greatly influenced our
understanding of how the built environment at a human scale
affects crime [41, 62] and perceptions of safety [6]. Safety
from accidents, such as tripping or falling, caused by potholes,
obstructions, bad lighting, and slippery surfaces (due either to
weather conditions or surface material), is also a key concern,
particularly for older adults, pregnant women and people with
disabilities [1]. Analysis of the built environment’s impact on
these public health and quality of life issues typically involves
time-consuming and costly in-field auditing, which requires
trained auditors to be present at the site in question to make
assessments and record their observations based on auditing
protocols [18, 38, 22, 56].

While a rapid growth in urban data gathering has resulted in
the development of new tools and practices that offer urban
planners and designers significant opportunities and benefits
at the city scale (e.g., [36, 13, 29, 70, 72]), there have been
far fewer such developments at the human scale. Efforts to
quantify and assess the visual appearance of the built envi-
ronment have typically been limited in terms of the number
and area of locations that can be covered, since they mainly
rely on in-field data collection and assessment procedures [75,
68]. Recently however, the advent of new computer vision

algorithms has made it possible to use image data to measure
the characteristics of the built environment [33, 59], and the
introduction of Google Street View (GSV) [4] and Microsoft
Streetside [45], which provide free panoramic images captured
by specifically designed vehicle-mounted cameras, has offered
new data sources. This has enabled researchers to tackle ques-
tions in urban planning, urban design, urban sociology, crimi-
nology and public health from a new perspective [5, 25, 59,
60]. GSV in particular has made virtual auditing possible [75,
10, 9, 44, 21], expanding and diversifying geographical cov-
erage, and reducing time and labor requirements. However,
while trained experts can now use GSV in assessments, they
must manually explore whole collections of images to identify
features of interest [33]. An additional layer of difficulty is
added when satisfaction criteria are based on external data; for
example, identifying pavements that might pose a danger to
pedestrians only under certain weather conditions, or assess-
ing the impact of construction projects. GSV now includes a
timeline feature which allows users to view temporal change.
However, data are often very sparse in this regard and so not
typically suitable for monitoring the evolution of a location of
interest, and therefore reducing the usefulness of GSV images.
A temporally dense collection of images on the other hand
makes it possible to visualize not only the different blocks,
neighborhoods, and boroughs of a city, but also changes in
their physical appearance over extended periods.

This research was facilitated, and in part motivated, by the
availability of a new data set comprising of images captured in
NYC over the course of a year. The data has been generated by
cameras mounted on top of regular vehicles, and the images
were captured at regular intervals as the cars travel throughout
the city. This meant that photographs could be taken con-
tinuously and, since these vehicles have been on the streets
throughout the year, often repeating locations, it has resulted
in a data set that is temporally dense, covering not only dif-
ferent times of the day but various seasons as well. However,
without specialized hardware, and with no human interven-
tion, there is also no guarantee that consecutive photographs
were taken to uniformly cover the streets, or that photographs
were taken with the correct focus. Yet having such a dense
data set creates the opportunity to conduct temporal analyses
and comparison of architectural features across geographically
distant locations. Because of this it allows for assessment of
the urban fabric at a scale not previously practical.

RELATED WORK
Concern for planning and designing the urban built environ-
ment, and supporting the practice of professionals working
in these fields, has been relatively limited at CHI. Prior work
includes Underkoffler and Ishi [85], who present a luminous-
tangible workbench as a system supporting urban planning,
and White and Feiner [87] who offer augmented reality sup-
port for site visits, by visualizing relevant data. More recently,
Mahyar et al. [54] introduced a system for engaging com-
munities in elaborating and evaluating urban design ideas
through micro-activities; and Pang et al. [65] describe employ-
ing a location-based game to investigate transit commuters’
use of community information. However, recent work by



Saha et al. [76], introducing “Project Sidewalk", is of particu-
lar relevance to the research we present here. Project Sidewalk
a is web-based tool that takes a crowd-sourcing approach to
virtual assessment of urban built environments, with both paid
crowd-workers and volunteers identifying and labeling acces-
sibility issues. Among the key issues they raise, regarding
the ongoing viability of their approach, are the age of GSV
panoramas and the quality and age of labels provided.

However, the increasing availability of urban data sets creates
opportunities to analyze and visualize cities in new ways. This
has resulted in a number of visual analytics systems designed
to interactively explore and analyze data [29, 64, 26], and
seek insight into transportation and mobility [3, 93], air pol-
lution [69], real-estate ownership [39], and shadow impact
on public spaces [57]. A comprehensive survey of research
into urban visual analytics is presented in Zheng et al. [94].
One area of new activity that can be revealing is geo-tagged
social network data. Urban Pulse [58] uses computational
topology techniques and data from Twitter and Flickr to visu-
alize spatio-temporal activity across various resolutions, and
Urban Space Explorer [42] proposes an approach to explore
public-space-related activity. Another is using computer vision
algorithms to assess the built environment through street-view
images, for example to: assess and map greenery and open-
ness in urban settings [51, 49], quantify the daily exposure
of urban residents to eye-level street greenery [90], extract
land use information [50], measure visual quality [82], visual
enclosure [91], urban form [80] and sky exposure [19] of street
spaces, and assess traffic signs [11], curb ramps [37] and urban
landmarks [46]. Street-level images have also been used to
predict relationships between a city’s built environment and so-
cioeconomic conditions [5], and as the basis for automatically
extracting a city’s most distinctive visual elements [25].

Querying large-scale image data sets is a key element of the
computer vision techniques that enable these new strands of re-
search. Prior to 2012 this was largely based on image features
extracted by local descriptors such as SIFT [53] or HOG [23].
However, recent work focuses on feature extraction through
convolutional neural network (CNN); for example, pre-trained
on image data sets (e.g., ImageNet) [81], based on a fine-tuned
CNN model [7], or using the feature representation extracted
from an intermediate layer of a pre-trained CNN [78, 84].
See [95] for a survey of content-based image retrieval. We
build on this prior research to show how geographically and
temporally dense street-level image data can support the work
of professional practitioners in urban planning, design and
related disciplines. To do this we present a novel system that
enables users to explore a first of its kind collection of images
by visually composing contextual queries and searching for
visually similar images. We enhance this with support for
spatiotemporal analysis of these images in conjunction with
other urban data sets.

INTRODUCING URBAN MOSAIC
Urban Mosaic, is a novel system for gaining insight into the
human-scale impact of city-wide urban development through
exploration of a temporally and geographically dense image
data set, utilizing spatio-temporal selection and aggregation,

image similarity, and clustering queries, which can be aug-
mented with additional spatio-temporal urban data. First we
describe the street-level image data set that motivated our work
and underpins our discussion of Urban Mosaic in this paper.
We then discuss its system architecture, our use of deep con-
volutional neural networks to extract feature embeddings, our
methods for efficiently computing image similarity, and the
Urban Mosaic user interface. Urban Mosaic is currently a
working prototype, which we are using to probe the potential
needs and wants of professional practitioners, and to explore
alternative use cases.

Motivation
Our work is motivated by the emergence of new image data
sets that offer spatially and temporally dense representations of
cities, and their potential for aiding urban design and planning
practitioners in auditing and assessing urban environments.
Current assessment practices involve in-field auditing which
requires visiting neighborhoods on foot, taking pictures, most
often on just a single day. In addition to the cost of training
and hiring auditors to carry out this work, it is time-consuming
and can involve extensive travel [27]. Weather conditions and
potential safety concerns [95] place further constraints on the
capacity to undertake frequent or city-wide audits. This can
mean important accessibility problems, such as the potentially
hazardous condition of a damaged sidewalk after heavy rain,
or under snow in winter, may not be captured during auditing.

Moving beyond the basic logistical challenges of undertak-
ing an in-field audit, practitioners must also find common
elements across these large collections of images; functional-
ity that is typically not present even in virtual auditing tools.
For example, an urban designer might wish to identify spe-
cific architectural articulations, e.g., a certain column type or
window design that signifies architectural style, and indicates
important factors such as estimated year of construction and
building materials. Extracting this level of detail is costly
and time consuming, particularly when undertaken through
in-field auditing across the city, but also when attempted man-
ually through exploring collections such as GSV. It can also
be crucial to audit and assess urban environments for safety
on an ongoing basis. For example, to know the condition of
curb cuts or crossings under different weather conditions. If
not properly maintained, they can pose a potentially life threat-
ening hazard, specifically to the more vulnerable groups such
as seniors or people with movement or vision impairment.

In our work on Urban Mosaic, we aim to facilitate the early
stages of assessing and auditing the built environment, en-
abling practitioners to combine quantitative and qualitative
data and perform fast queries of visual features over a large,
spatially and temporally dense collection of street-level im-
ages. Urban Mosaic can provide earlier insights into how
the city might be experienced, enabling visual comparison
of geographically distant areas, and identifying similarity by
architectural features and urban data sets, such as census data.
Urban Mosaic will not replace the need to visit neighborhoods
and experience them in person, but it can provide insight to
help filter those areas that need visiting, and build a richer
picture to augment those neighborhoods that are audited.
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Figure 1. System architecture of the Urban Mosaic system.

Data Set of Street-Level Images
The street-level image data used in this research was gracefully
provided by Carmera. The data has been generated by cameras
mounted on vehicles. These cameras, each orthogonal to
the other and facing a particular direction, capture images at
regular intervals as the cars travel throughout NYC. Unlike
GSV, where cars are deployed specifically to capture street-
level images, these are vehicles making journeys as part of
the driver’s regular day-to-day activity. Because of this, the
quality of images may vary due to illumination, weather, traffic
conditions, or blurriness (e.g., due to vehicular speed). The
mobile phone also records metadata for each image in the data
set: time, location, and camera orientation. This data is more
temporally dense than data sets such as GSV or Microsoft
Streetside. We employ a subset of the full data, covering the
boroughs of Manhattan and Brooklyn between April 2016 to
April 2017, and totaling 7.77 million images.

System Architecture
Our description of Urban Mosaic is broadly divided into two
parts. First we discuss the backend server, which is responsible
for enabling real-time responses to queries, followed by the
user interface where these queries are composed (Fig. 1).

Query engine and data storage. The Urban Mosaic query
engine supports: (1) spatio-temporal selection and aggrega-
tion queries; and (2) image similarity and clustering queries.
Spatio-temporal selection queries first perform a coarse tem-
poral query to satisfy the time period constraint, and then
the resulting coordinate points are tested in parallel against
the spatial constraint. To handle spatio-temporal aggregation
queries we again first run a coarse temporal query, which
we pass to RasterJoin [92] to compute the required spatial
aggregation. For image similarity and clustering queries we
preprocess a feature index to compute and store the images’
features, and use this to perform similarity queries. Images
are stored as individual files on disk, while metadata and other
spatio-temporal data are stored using MonetDBLite [71].

Image feature embedding. We use the intermediate layers of
a pre-trained CNN as a representation of the visual information
of an image. We adopt two approaches to achieve our goal
of capturing semantic similarity: one for computing a coarse
similarity measure for clustering queries, and another for the
feature-based image similarity search. The first follows [84],
and derives a compact feature vector of size 512 from the
convolutional layer activations of multiple regions of a single
image. This produces a feature vector that coarsely captures

general aspects of the scene, to assess overall image similarity
and group images into relevant clusters. The second, used
for image similarity search, follows [78] and employs a fully-
connected layer of VGG16 [81] as a compact and fixed-length
feature descriptor of a image or region of a image. We compute
a feature vector of size 4096 for each image region in a 2x2
and a 4x4 grid. Each image is represented by 20 4096-sized
feature vectors in total. Two images are said to be similar if the
similarity measure between at least one pair of feature vectors
from the two images is below a given threshold.

Efficient image similarity computation. We compute simi-
larity between two images I1 and I2 as the angular distance
α1,2 between the corresponding feature vectors ~v1 and ~v2:

α1,2 = cos−1(
~v1 ·~v2

| ~v1 || ~v2 |
)

While this is straightforward for two images, a brute force
search through all the feature vectors does not scale when
working with several million images. The main challenges in
enabling interactive similarity queries are twofold: (1) size:
since a given image is composed of 20 4096-sized and one
512-sized feature vectors, it requires a total of 322 KB space.
A data set consisting of 7.7M images will therefore require
over 2.5 TB; and (2) complex floating point operations: a
single comparison requires O(4096) (or O(512) for clustering
queries) floating point operations, which while reasonable for
a small number of comparisons, cannot be done interactively
over the entire data.

We overcome this by trading off accuracy for speed using a
locality sensitive hashing (LSH) [20] scheme to encode the
feature vectors, and performing the query using the hashed
data. Given a set of input vectors in Rd , the family of hash
functions making up this LSH scheme is defined as follows:
choose a random d-dimensional vector~r where each coordi-
nate is drawn from a 1-dimensional Gaussian distribution. The
hash function corresponding to~r is defined as:

h~r(~u) =
{

1 if~r ·~u≥ 0
0 if~r ·~u < 0

Then, given two vectors ~v1 and ~v2 in Rd :

Pr[h~r(~v1) = h~r(~v2)] = 1−
α1,2

π

The idea then is to estimate the above probability to com-
pute the angular distance between any two vectors. To do
this, we first generate n d-dimensional vectors {r1,r2, . . . ,rn}
as described above, where d = 4096 (or 512). Given a d-
dimensional vector~v, define the hash value h(~v) as follows:

h(~v) = [h~r1(~v),h~r2(~v), . . . ,h~rn(~v)]

Then, the angle α1,2 between two vectors v1 and v2 can be
estimated using h(~v1) and h(~v2) as follows:

α1,2 = (1−Pr)×π , where Pr =
∑

n
i=1 h~ri(~v1)⊕h~ri(~v2)

n
Note that since h() is a 0/1 vector, each dimension of this vec-
tor can be stored using a single bit. In other words, the space
required to store a single hash value is just n bits, thus reducing
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Figure 2. Urban Mosaic user interface. A reference image is used in the image query widget to search the database for similar images. The image
mosaic clusters the image query result and visualizes these clusters. The clusters, in this instance, are sorted based on their size. Two of the clusters
are selected (blue and green circles) in the mosaic, showing the locations of the images part of these clusters on the map. Additionally, as part of the
analysis, the median income data is visualized as a heatmap over the neighborhoods of NYC. One can notice that the locations of the images from the
selected clusters are prominently concentrated in the affluent neighborhoods of NYC (relatively darker regions).

the space required to store the hashed feature vectors of our
data to 21 GB (using n = 1024) instead of the over 2.5 TB
required for storing the original feature vectors. Moreover, the
main operation in the above equation is the XNOR operation
over n bits, which is available as an intrinsic operation on
current CPUs making this computation extremely efficient.

User Interface
The Urban Mosaic user interface consists of three main com-
ponents, shown in Fig. 2. We discuss each of these in turn.

Image query widget. This widget allows users to compose
image query constraints. Users can either upload images of
interest or use the images already in the underlying database.
The widget also allows users to optionally crop query im-
ages. When multiple images are part of the query constraint,
the query returns images that satisfy all the constraints (i.e.,
an intersection operation is performed). Fig. 3 illustrates an
example of composing image queries using Urban Mosaic.

Urban data interface. The urban data interface allows users
to visualize the spatial and temporal distributions of urban data
sets using a map and a time series widget respectively. Based
on their exploration of these urban data sets, users can select
regions of interest over the map, and temporal ranges using the
time series, to act as additional constraints on the image query.
Urban data sets can be visualized as heatmaps at different
spatial resolutions, e.g., neighbourhood, block, street or as
a high resolution grid. Users can optionally apply a custom
polygonal partition of the city to provide spatial resolution,
by uploading polygonal data. The map may also be used to
visualize the results from the image query as a heatmap.

Image mosaic. The image mosaic widget is used to display
clusters of similar images returned from image queries. Users
can sort clusters, and images within a cluster, using data at-
tributes from other urban data sets that are loaded into Ur-
ban Mosaic (e.g., noise complaints, temperature) or by image

attributes from metadata (e.g., image date, car id). Users can
also visualize the spatial distribution of one or more selected
clusters on the map, enabling them to more quickly identify
locations where images are found with similar attributes to
those in the selected cluster(s). Image mosaic is paginated
to allow for queries that return large numbers of clusters. A
workspace widget provides a space for the user to save the
potentially large number of images of interest that might re-
sult from multiple queries over the data undertaken during a
session. These saved images can be exported, along with any
other urban data associated with them during analysis.

Practitioner perspective
In an earlier prototype of Urban Mosaic, practitioners found
selecting between resolutions (e.g., 2x2 or 4x4 grid) when
performing similarity search unnecessarily complex, and so
in the prototype reported here the search is performed on
all feature vectors, irrespective of its image region. Another
feature introduced as a response to practitioner feedback is
the facility to aggregate spatial urban data on multiple levels
(e.g., neighbourhood, census tract). This was implemented
because urban planners from Draw Brooklyn were particularly
interested in analyzing the distribution of historical buildings
at a census tract level.

USING URBAN MOSAIC
Urban Mosaic has been developed as a collaboration between
researchers in visual analytics, HCI, and urban planning. How-
ever, to better understand the requirements practitioners might
have, and the use cases this type of tool might facilitate, we
undertook a series of interviews with practitioners from KPF,
Draw Brooklyn and a research occupational therapist from
NYU who specializes in urban accessibility for older people.
In this section we provide a detailed presentation of two of the
use cases that emerged from these interviews. In the first, we
help identify locations were accessibility solutions for some
may not always mean increased accessibility for all, and in the
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Figure 3. Composing image queries using Urban Mosaic. A reference image of a red brick building is uploaded and cropped (orange outline) to search
for red brick facades in NYC. The locations of the images with similar images are visualized on the map, and a region in lower Manhattan is then used
to filter the image results. One such image shows a red brick facade with a staircase. The image query is now refined to add the staircase constraint.
This is done by adding this image to the query, and cropping to the region containing the staircase. Two of the resulting images, containing both a red
brick facade and a staircase, from different parts of Manhattan are shown on the right.

second we show how sensitivity towards preserving the urban
fabric should extend beyond neighborhoods considered his-
toric. All figures in this section are Urban Mosaic screenshots
edited for privacy, and to provide a clearer graphic explanation
of the tasks undertaken.

Accessibility and Mobility
Sidewalks are arguably the most important pedestrian-
dedicated planned public spaces; and so inclusive, accessible
streets, which serve a variety of users, are a mark of how effec-
tive a city is at the human scale. Title II of the Americans with
Disabilities Act (ADA), requires pedestrian crossings to be
accessible to people with disabilities [86], and one challenge
experienced by wheelchair users is coping with raised curbs.
This can be mitigated with the addition of a short ramp cutting
through the curb. Among the regulations guiding the use of
curb ramps, is the requirement that a “detectable warning", in
the form of a tactile square, be installed on all the ramp-cuts
for visually impaired pedestrians. These tactile pavings are
distinctive, often yellow or red, with a bumpy surface created
to be detectable with cane, feet or by guide dogs, and a bar
pattern that serves as a directional guide.

In a 2014 study, the installation of these tactile pavings ranked
as the least observed curb-cut regulation in Manhattan, with
more than 88 percent of the curbs having no detectable warn-
ing surface installed [55]. However, following legal action the
city has agreed to upgrade all curbs to meet ADA ramp and
tactile paving requirements [34]. This requires an assessment
of the condition and quality of all the city’s 162,000 curbs. The
size of the task ahead becomes apparent when we see, by way
of comparison, that 40 auditors were trained and employed for
the 2014 study, in which less than 1% of curbs were assessed.
Here we describe how Urban Mosaic can help with this task.

Tracing the installation of tactile pavings. The first step in
our assessment analysis is to select example images of tactile
pavings installed on city curb ramps. We use a reference

image (Fig. 4(a)) to provide the initial query input for our
search, which will return clusters of similar images from the
data set. These images are tagged with geo-location metadata,
and so we are able to visualize the locations where images
of tactile pavings were found on the city map (Fig. 4(c)). It
is also possible to map the street corners where no images of
tactile pavings were found, but it is important to remember
that the lack of an image does not necessarily mean there is
no tactile paving installed on the curb ramp at that site. In
some cases this may be because the location has not been
sufficiently covered in the database of images, it may also be
because image quality (e.g., poor focus) was not sufficiently
good for the algorithm to clearly identify the feature. Urban
Mosaic was used for visual confirmation and query refinement
of the results, as shown in Fig. 4(b).

The next step is to manually select a particular location of
interest on the map, where tactile pavings are present, in order
to gain some insight into the condition of the tactile, and how
long the tactile pavings have been in place. The selection of a
particular location provides a spatial constraint for filtering our
query results (Fig. 4(c)). We then sort the resulting images by
the time that the picture was taken (from the image metadata)
to analyze the location over time. Looking over the sorted im-
ages from the selected location, we are able to identify that in
May 2016 there was a damaged tactile pavement that became
potentially dangerous to pedestrians because of a puddle of
water (Fig. 4(d) top). However, the tactile paving was later
repaired (Fig. 4(d) middle), and remained in good condition
until the end of the year (Fig. 4(d) bottom).

Tactile paving that may be a hazard for older adults. Our
work with an occupational therapist began with an exploration
of features in the urban fabric that might be associated with
older adults falls. We introduced our assessment analysis of
tactile pavings as a possible model for finding something that
might be helpful. We learnt that the raised bumps in these
tactile pavings are themselves often a cause of problems for
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Figure 4. Using Urban Mosaic to inspect the presence and condition
of tactile pavements in NYC, which is important to provide safe pedes-
trian access to people with movement or vision impairment disabilities.
(a) Query image. (b) Three examples of other images in the database
similar to the query image. (c) Visualizing the density of all images in
NYC similar to the the query image as a heatmap. The highlighted re-
gion is set as a spatial constraint to query only for images similar to the
query image in that region. (d) Three example images taken at differ-
ent times showing that the pavement at that location is in dire need of
repairs in May 2016, and was later repaired before August 2016.

older adults [63], and that these problems are exacerbated in
bad weather. With Urban Mosaic we are able to combine data
sets and image search to filter down areas of interest, and with
the temporally dense data set of street-level images we can
investigate the same location in different weather conditions.
Next, we use Urban Mosaic to identify neighborhoods with a
larger population of older adults, and then to query how the
curb ramp and tactile pavings look under different weather
conditions in specific locations.

The first step in our extended assessment is to identify neigh-
borhoods with a larger population of older adults. To do this
we load and map NYC census data. We then zoom in on two
neighborhoods: Hell’s Kitchen (towards the bottom of the map
in Fig. 5(a)) and Upper West Side (towards the top). These
provide a spatial constraint to our tactile paving image query,
and we are able to identify examples from within each neigh-
borhood. We then add a temporal constraint from weather data
(Fig. 5(b)), so that the query only returns images taken on days
when there was some precipitation (rain and/or snow). We
highlight three images from Upper West Side (Fig. 5(c)) which
show the same street corner with different snow covering—no
snow (left), uncleared snow (middle), and slushysnow (right).
Note that the two snow scenarios are particularly dangerous for
older adults, increasing the likelihood of falls. Similarly, we
show two examples from Hell’s Kitchen from another street
corner (Fig. 5(d)), without rain (left) and after rain (right).
There are two interesting points to note in this example: (1) this

corner does not have a tactile paving; and (2) the right image
was taken after the rain stopped which can be seen by most of
the area having dried out. However, the presence of puddles
next to the curb indicates an area of concern for pedestrians,
particularly older adults.

Because we are able to filter our image queries based on other
spatial (e.g., census) and temporal (e.g., weather) data sets,
we can present a detailed picture of particular locations of
interest, based on the presence of tactile paving, and on a
combination of demographic factors and weather conditions.
This will allow the occupational therapist we are working
with to (1) explore and identify unfamiliar neighborhoods
that are causes of concern for older adults’ pedestrian safety;
(2) provide materials to inform discussions with residents, and
plan specific strategies to support older adults’ mobility and
help prevent falls; and (3) use the examples to help create maps
that can guide resilience training activities that must take place
on good weather days, but which are sensitive to conditions
on bad weather days. This use case responds to a requirement
to better understand the urban fabric in locations that may
be geographically distant and unfamiliar, and to be sensitive
to how the built environment in these locations are affected
by different weather conditions. The ability to qualitatively
reflect the temporal variation in a single location is particularly
useful in this context.

Practitioner perspective
The ability to explore the same neighborhood under different
weather conditions, in relatively fine-grained detail, supports
a key task for our collaborating occupational therapist. Her
practice involves developing resilience plans with older adults
that aid mobility around their immediate neighborhood, and
reduce the number and likelihood of falls. The program she
runs is designed around in-field exploration and discussion
of walking experiences. As the locations these sessions take
place in can be almost anywhere across the city, she will rarely
have a detailed knowledge of the particular hazards faced.
However, there are potentially hazardous features that she will
commonly look out for, such as a stoop without railings up the
stairs, curb cuts where rainfall and snow might accumulate,
areas with a risk of black ice, and tactile paving stones that
can be problematic to people who use walking supports. As
she explained during a requirements discussion, “It would be
great if I was able to select neighborhoods where there are
high concentration of seniors as well as poor street conditions,
from broken sidewalks to accumulation of rainwater, and then
do a comparative analysis between different neighborhoods.”

She envisioned Urban Mosaic as a tool to support route plan-
ning, which is an important aspect of planning for resilience
training. Combining collections of images taken under dif-
ferent weather conditions with other types of data, such as
the pattern of shadow at different times of the year, can help
identify locations that are likely to be particularly prone to
black ice. As she explained, “If seniors know the areas with
higher risk of fall in advance, like those that get very little sun-
light or much shade in the winter which can be the potential
hot-spots for black ice, they can plan their walk to avoid those.”
During our formative evaluations she further explained that,
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Figure 5. Assessing the conditions of pavements in regions having a higher concentration of older adults. (a) Visualize the census data as a heatmap
over the neighborhoods, and select spatial constraint based on locations with higher count of older adults. (b) Select time periods having precipitation
(rain or snow) as a temporal constraint. (c) A street corner in Upper West Side before and after snow fall. (d) A street corner in Hell’s Kitchen, having
no tactile pavement, before and after rainfall.

“Looking at images from snowy days, I can evaluate the areas
that are going to be the most problematic, like this segment or
cross walk. If there is going to be the accumulation of water
or snow then this area is a particularly bad one”. Moreover,
while there are a set of common mobility challenges older
adults face, each different neighborhood is also likely to vary
in important ways. Our aim with Urban Mosaic is to support
virtual pre-visits that can help improve understanding about
the particular hazards faced, “Every neighborhood that we
choose has its own challenges and what I like about the tool is
that you can define what the main problem is, e.g inclement
weather or obstruction, and these are the issues we’re going
to help the seniors identify and be safe around”.

However, something we learned as our discussions progressed
was that for her program, the best way to use the information
that Urban Mosaic can generate is typically using printed
maps, and these maps should present information in a simple
manner so that they can be a prompt for discussion and training.
During an evaluation session we were told, “When you go
to the meeting centers, some of them don’t even have WiFi
available or a computer screen, everything is very low-tech.
I print out the maps, I take a highlighter and I show them:
here is your block, these are the problematic locations. So
something I can translate to a hard copy that can be handed
out is what works best at this stage”. We were asked, “Is
there a way to present that data in the form of a map, can you
generate the hard copy of the map with the locations indicated
on it?”, and instructed that “the more user friendly the better
and the more simplistic we can make them the better, because
then it is going to be beneficial to everybody, not just people
with higher education”. This is a focus for ongoing work.

Preservation and Retrofitting
In a large and dynamic city such as NYC, demands for new
development are often in conflict with a desire to protect the
particular character of individual neighborhoods, with Jane Ja-
cobs’ fight to protect Greenwich Village in the face of Robert
Moses’ West Village Urban Renewal and the Lower Manhat-
tan Expressway project being the iconic example [35, 40].
The different architectural styles present across the city re-
flect and define the rhythm of different neighborhoods. For

example, the design of building facades has significant im-
pact on pedestrians’ walking experiences. The fine detail and
vertical articulation of facades, the presence of narrow units,
and display windows, all contribute to making a walk seem
shorter and less tiring; and such features lead to more invit-
ing and walkable neighborhoods, helping to create a livelier
city [32]. Reflecting this, the regulation codes for construction,
renovation, and repair, can differ based on neighborhood char-
acteristics, with some districts designated historic, or some
individual buildings designated landmarks [61, 30]. However,
the presence of these positive architectural features is arguably
even more important in diverse locations beyond the historic
neighborhoods where regulation helps protect them; and yet it
is precisely these locations where the risk of unsympathetic
development is greatest. Protecting the urban fabric in neigh-
borhoods not already designated historic is an important and
challenging task, made more difficult by the geographic spread
of the neighborhoods in question. Here we demonstrate how
Urban Mosaic can support these activities by collating exam-
ples of particular architectural features, and mapping their
density across geographically distant locations.

Assessing urban fabric preservation. NYC neighborhoods
are often characterized by particular architectural features and
materials; for example the walk-up steps and stoop common
among Brooklyn brownstones, and the limestone used to build
many Beaux-Arts style Manhattan townhouses. The first step
in our assessment analysis is to load data containing locations
of historic buildings in NYC, visualizing it as a heatmap over
the neighborhoods of the city (Fig. 6(a)). We then select two
neighborhoods that are designated historic , Hamilton Heights
in Manhattan and Park Slope in Brooklyn. We then query the
most common images found, and select buildings that display
typical characteristics of each neighborhood (Fig. 6(b)).

The next step is to identify neighborhoods where buildings
with these positive architectural features are present in a ben-
eficial density, but which have not been designated historic.
Buildings with these features are typically desirable, and lo-
cations where they are found are often associated with gentri-
fication and rapid redevelopment. Using Urban Mosaic, we
can identify such neighborhoods by selecting salient regions
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Figure 6. Exploring the architectural characteristics of different neighborhoods. (a) Heatmap showing the density of historical buildings in each neigh-
borhood. (b) Example images showing the typical architectural characteristic of two historical districts: Hamilton Heights (top) and Park Slope (bot-
tom). (c) Searching for other regions in the city having the specific characteristic (orange region in (b).top) results in identifying a region in West Harlem
having similar characteristics. Left: blocks designated as historical in NYC. Top right: most common types of arc. (d) Similarly, Sunset Park has char-
acteristics similar to that of Park Slope.

from images exemplifying the architectural features of interest,
and using these as input to city-wide image queries (one for
each feature of interest, highlighted by the orange rectangles
in Fig. 6(b)). This identifies a neighborhood in West Harlem
with a number of buildings with similar features to those ex-
pected in a Manhattan limestone townhouse (highlighted by
the black circle on the map in Fig. 6(c)), and a neighborhood
in Sunset Park with a number of buildings with similar fea-
tures to those expected in a Brooklyn brownstone (Fig. 6(d)).
Without the regulatory protections afforded by the designa-
tion of historic neighborhood status, there is an increased risk
that redevelopment will include construction that is unsympa-
thetic to such neighborhood’s particular character, and to the
lived-experience of residents. This danger may be increased
in neighborhoods that are home to underrepresented commu-
nities or with low socioeconomic indicators. Because of this,
our analysis may be furthered using Urban Mosaic to compare
neighborhoods by demographic and other indicators, e.g. age,
income, employment, education, housing costs, etc. If, for
example, we compare the median income of Sunset Park with
that of Park Slope, we see that income in the neighborhood
designated historic is markedly higher. This use case responds
to a requirement for monitoring preservation and retrofitting
in a context where gentrification and excessive redevelopment
is often a pressing issue of concern for many residents of the
neighborhoods affected. This type of query was raised by both
urban design practices as important.

Practitioner perspective
For practitioners such as our collaborators at KPF and
Draw Brooklyn, the challenge is often to make comparisons
between multiple different neighborhoods, which may be ge-
ographically distant, along a variety of different parameters.
Both pushed us to further develop the capacity to include ad-
ditional data sets so that, for example, the visual experience

associated with architectural features might be considered in
relation to particular demographic or zoning characteristics of
a neighborhood. For KPF, “this can bring analytics into the
experience and feeling of a neighbourhood” and help plan-
ners “visually assess the characteristics of the neighbourhood
and find those common to that specific zone type”, which
might help in planning and designing new neighborhood re-
generation projects as “planners can first select the features
they think visually describe that neighborhood and assess
how common these features are within that region and also in
another neighbourhood”. Image clusters “can describe the
visual characteristics in a faster way", and exploring tempo-
rally dense image data might enable planners “to see how the
neighborhood fabric is deteriorating through time”.

Similarly, for Draw Brooklyn, the ability to query on visible
architectural characteristics and compare other factors, such as
zoning and demographics was a way to consider the varying
impact of initiatives such as Active Design [2]. They wanted
to be able to explore the building wall plane across neigh-
borhoods, “where the sidewalk meets the private property
line”, as this is important for preserving characteristics that
contribute to the active feeling of a neighborhood, and also
for planning features that enhance an active experience. For
example, open-front stores and transparency change peoples’
perception of distance such that, “a walk along 5th Avenue
feels much shorter and much less tiring since the street canopy
and architectural articulation of the facades of adjacent build-
ings are rich and varied. Sidewalks should be designed like
football fields: people need something interesting to see ev-
ery 10 yards". However, many of these features, such as the
vertical rhythm of the buildings or buildings spaced closely
together, are more prevalent in the same historical neighbor-
hoods where gentrification and aggressive over-development
can become a problem.



During evaluations, both KPF and Draw Brooklyn drew atten-
tion towards adding a natural language capacity to support the
translation between textual queries and visual search. As one
practitioner from Draw Brooklyn put it, adding this feature

“allows users to tag images with keywords, then the user can
create a new gallery based on this keyword”.

DISCUSSION
The availability of geographically and temporally dense data
sets of street-level images, combined with computer vision and
visual search techniques, has the potential to offer powerful
new tools to support the work of architects, and urban planners
and designers. For example, facilitating new forms of virtual
audit and assessment. While virtual auditing with publicly
available tools such as GSV has started to explore this space
and address some of the limitations of in-field auditing [75, 10,
9, 44, 21], three key challenges have been noted. First, these
approaches have typically required trained experts to manually
explore large collections of images [66, 96, 8]; second, these
collections of images, while geographically dense, are tempo-
rally sparse, making it difficult to track change over time [75,
16, 15, 66]; and third, these approaches do not integrate exter-
nal data that might filter image data or capture the additional
features required by many audit tools [79, 89, 16]. Similar
challenges have been noted when a crowdsourcing approach
to accessibility auditing at scale was adopted [76]. Even for
practices using data-informed methods, assessing the quali-
ties of different neighborhoods typically involves a manual,
time-consuming process of documenting different locations,
or a similarly time-consuming process of virtually walking
through neighborhoods in GSV.

With Urban Mosaic, we begin to address each of these chal-
lenges. First, we are able to provide an automated first pass
visual search for features of interest, which can significantly
reduce the overhead of manually searching through GSV and
refine the geographical scale of virtual auditing. Second, we
offer a dense temporal granularity that facilitates comparison
of the same location over multiple points in time, supporting
greater insight into the qualitative, human-scale impact on
changes to the urban fabric; as illustrated in our case study,
Tracing the installation of tactile paving. Third, we offer prac-
titioners the ability to incorporate additional spatio-temporal
data sets, such as weather, demographics, zoning, property
values, crime, etc. to further filter or inform visual search; as
illustrated in our use cases Assessing urban fabric preserva-
tion and Tactile paving that may be a hazard for older adults.
Building on the capacities that are emerging through current
virtual audit and assessment practices, Urban Mosaic does not
replace the need to visit selected locations, rather we aim to
support practitioners’ informed decision making by helping to
filter and refine the selection of neighborhoods and locations
to visit, and by providing new insights into temporal changes
in the urban fabric. Our collaborating practitioners have to
date been supportive of these attempts to provide fast, effi-
cient alternatives for many of the tasks conventionally done
through manual, time consuming methods; a practitioner from
Draw Brooklyn commented that "it can dramatically trans-
form the way cities are planned and operated".

In developing Urban Mosaic, we have incorporated roughly
7.7 million images taken over the course of a year in two bor-
oughs of NYC. To explore what amounts to several terabytes
of data, we utilize computer vision techniques to extract image
features. However, even working with computed features can
be slow enough to hamper visual exploration [52], and so we
use an LSH-based index to reduce the memory footprint of the
workable data and allow for fast query response times.

Limitations and future work
This research is part of ongoing inquiry into the opportuni-
ties that new image data sets and new techniques for visual
search offer practitioners such as urban planners and design-
ers. The work we report here includes these practitioners
in requirements gathering and formative evaluation activities.
These interactions have highlighted a number of particular
areas for future research, including the integration of a natural
language tool to translate text input into visual search and
providing printable output in the form of maps or other reports.
However, to more fully understand these opportunities, and
their wider impact on the work of these professionals, future
research should include longitudinal user evaluation studies
with Urban Mosaic being used in the day-to-day practice of
our collaborators, and be expanded to include a wider diversity
of possible future users.

CONCLUSION
In this paper we introduced Urban Mosaic, a visual analysis
tool for the interactive search and exploration of the urban
fabric of NYC, and demonstrated the potential of large-scale
street-level image data sets to support urban planning and de-
sign. We have described our work with professional practition-
ers to surface opportunities and requirements for employing
these data, and shown how they might offer a route towards
staying sympathetic to the impact at a human-scale caused
by city-scale changes. We also presented two detailed use
cases that demonstrate how Urban Mosaic responds to these
opportunities and requirements; and we have shown how the
combination of geographically and temporally dense image
data can be combined with other spatio-temporal urban data
to provide a bridge between the city and the street.
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