
To appear in IEEE Transactions on Visualization and Computer Graphics

TOPKUBE: A Rank-Aware Data Cube for
Real-Time Exploration of Spatiotemporal Datasets

Fabio Miranda, Lauro Lins, James T. Klosowski, and Claudio Silva

Abstract— From economics to sports to entertainment and social media, ranking objects according to some notion of importance is
a fundamental tool we humans use all the time to better understand our world. With the ever-increasing amount of user-generated
content found online, “what’s trending” is now a commonplace phrase that tries to capture the zeitgeist of the world by ranking the
most popular microblogging hashtags. However, before we can understand what these rankings tell us, we need to be able to more
easily create and explore them, given the significant scale of today’s data. In this paper, we describe the computational challenges in
building a real-time visual exploratory tool for finding top-ranked objects, build on the recent work involving in-memory and rank-aware
data cubes to propse TOPKUBE, and demonstrate the usefulness of our methods using real-world, publicly available datasets.

1 INTRODUCTION

Ranks and lists play a major role in human society. It is natural for us
to rank everything, from movies to appliances to sports teams to coun-
tries’ GDPs. It helps us understand a world that is increasingly more
complex by only focusing on a subset of objects. There is probably no
better way to describe a decade than by ranking its most popular songs
or movies. One just needs to look at the Billboard Hot 100 of each
year to grasp of how the majority of society used to think and behave.

With the ever-increasing amount of user-generated content found
online, ranks have never been so popular to our cultural landscape.
“What’s trending” has become a commonplace phrase used to cap-
ture the spirit of a time by looking at the most popular microblogging
hashtags. The same way that the most popular songs can be used to
describe the zeitgeist of a year or a decade, what’s trending can be used
to describe the spirit of a day or even an hour.

The ubiquity of GPS-enabled devices provides further insight into
the people creating this content by providing their location informa-
tion, which creates a much more interesting, and more complicated,
version of the ranking problem. Now, not only are we interested in
what is trending over time, but also over space, which can range from
the entire world all the way down to a city block. Creating techniques
that compute these rankings and that allow for exploration of such
ranks are thus increasingly important to better understand our world.

A system that can efficiently process a large number of records and
come up with answers in a few minutes or seconds can be applied to
an innumerable set of important problems, including those described
here. In recent years, though, with the explosion of data gathering
capabilities, there is a growing demand for a kind of tool for which
latency at the scale of seconds or minutes is unacceptable. Problems
for which no automatic procedure exists that can replace human inves-
tigation of multiple (visual) data patterns require exploratory tools that
are most effective when driven by a low latency query solving engine.
Making a human wait for the result and breaking her flow of thought
might be the difference between capturing an idea or not.

We have recently seen a growth in research into techniques enabling
low latency queries for the purpose of driving visual interactive inter-
faces. For example, from the perspective of enabling fast scanning of
the data at query time, systems like MapD [11] and imMens [10] use
the parallel processing power of GPUs to answer queries interactively.
From a complementary perspective, Nanocubes [8] describe how to
pre-aggregate data in an efficient but memory intensive fashion to al-
low for light-weight processing of queries also interactively.

In this paper we also follow this path of describing techniques
for low-latency querying of large data for exploratory visualization

Fabio Miranda and Claudio Silva are with NYU. Lauro Lins and James

Klosowki are with AT&T Labs. E-mails: { f miranda,csilva}@nyu.edu,

{llins, jklosow}@research.att.com

purposes. We propose an extension to the efficient pre-aggregation
scheme described in Nanocubes [8] to cover an important use case
that was largely ignored and very inefficient in the original proposal:
namely, interactively ranking the top-k objects from a large data col-
lection using an arbitrary multi-dimensional selection. For example,
we would like to answer queries such as: “What are the top-20 Flickr
tags?” for a manually selected spatial region such as Europe, Califor-
nia, Chicago, or even Central Park. Furthermore, we want to be able
to determine how the popularity of these tags evolved over time, as
dictated by the end-user’s interests, all at interactive rates. We show
that the state-of-the-art is not able to compute such queries fast enough
to allow for interactive exploration, but our method, called TOPKUBE,
is, up to an order of magnitude faster than the previous techniques.

2 RELATED WORK

The challenge of visualizing large datasets has been extensively stud-
ied. Most techniques perform data reduction by aggregating a large
number of points into as few points as possible, and then visualiz-
ing that smaller aggregation. These reductions, such as sampling [4],
filtering [15], and binned aggregation [2], try to convey most of the
properties of the original dataset while still being suitable for inter-
active visualization. Even though sampling and filtering reduce the
number of items, certain aspects of the data (outliers) may be missed.
As pointed out by Rousseeuw and Leroy [13], data outliers are an im-
portant aspect of any data analysis tool. Binned aggregation, however,
does not have such limitations. The spatial domain will be divided into
bins, and each data point will be aggregated into one of those bins. The
visualization will be reduced to the number of bins in the domain.

The visual exploration of large datasets, however, adds another
layer of complexity to the visualization problem. Now, one needs to
query the dataset based on a set of user inputs, and provide a visual
response as quickly as possible, in order not to impact the outcome of
the visual exploration. In Liu and Heer [9], the authors present gen-
eral evidence for the importance of low latency visualizations, citing
that even a half second delay in response time can significantly impact
observation, generalization, and hypothesis rates. Data structures such
as imMens [10] and Nanocubes [8] leveraged a data cube to reduce
the latency between user input and visualization response. Data cubes
have been explored in the database community for a long time [6], but
in the visualization community, they were only first introduced in 2002
by Stolte et al. [16, 17]. All of these techniques, however, are limited
to simple data types, such as counts. They were designed to answer
queries such as: “How many pictures were uploaded from Paris dur-

ing New Year’s Eve?”. Our data structure goes beyond that. We are
able to answer more detailed queries, such as “What were the most

popular image tags for all the pictures uploaded from Paris?”.
The notions of ranking and top-k queries were also first intro-

duced by the database community. Chen et al. [3] presents a survey
of the state-of-the-art in spatial keyword querying.The previous data

1



Fig. 1. Ranking NBA players by number of shots from the left 3-point corner (orange) and right 3-point corner (blue) for the 2009-2010 season. The
left image is a heatmap of all shots: brighter colors indicate more shots were taken from that location. The hotspot clearly identifies the basket.

structures, however, focus on building indexing schemes suitable for
queries where the universe of keywords is restricted. In other words,
given a set of keywords, rank them according to their popularity in a
region. If there is no keyword restriction (or the number of restricted
keywords is too large), then such proposals become unfeasible. Our
proposal is much broader: we are able to compute the rank of most
popular keywords even if there is no keyword restriction.

Rank-aware data cubes have also been proposed in the database
community. Xin et al. [19] proposed the ranking cube, a rank-aware
data cube for the computation of top-k queries. Wu et al. [18] then
proposed the ARCube, also a rank-aware data cube, but that supports
partial materialization. Our proposal differs from them in two major
ways: we specialize the data structure to better suit spatiotemporal
datasets, and we demonstrate how our structure can provide low la-
tency, real-time visual exploration of large datasets.

Another related database research area is top-k query processing:
given a set of lists, where each element is a tuple with key and value,
compute the top-k aggregated values. Several memory access scenar-
ios led to the creation of a number of algorithms [7]. The NRA (no
random access) algorithm [5] assumes that all lists are sorted and that
the only memory access method is through sorted access. The Thresh-
old Algorithm (TA) [12, 1] considers random access to calculate the
top-k. More recently, Shmueli-Scheuer [14] presented a budget-aware
query processing algorithm that assumed the number of memory reads
is limited. We propose a different top-k query processing algorithm,
suitable for our low latency scenario. We show that, due to the high
sparsity of the merged ranks, past proposals are not suitable.

3 BINNING AND COUNTING

To motivate the discussion, we begin with a simple example. Assume
a data analyst is studying shots in National Basketball Association
(NBA) games from a table like the one below (only three rows shown).

team player time pts x y
CLE LeBron James 5 0 13 28
BOS Rajon Rondo 5 2 38 26
CLE LeBron James 7 3 42 35

In this table, every row represents a shot in a game. The first row, for
instance, indicates that LeBron James, who plays for Cleveland, took
a shot in the 5th minute of a game from the court coordinates x = 13,
and y = 28; the shot missed the basket and he scored 0 points (pts).
The second row represents a 2-point shot made by Rajon Rondo from
Boston, and the third row represents the next shot taken in the game: a
3-point shot made by Lebron James. With a powerful querying inter-
face (e.g. SQL) on top the table above, it is clear that an analyst can
formulate many insightful aggregations. The query:

select player,count(player) as numshots from

table group by player order by numshots DESC

limit 50

would generate a ranked list of the players that took the most shots,
while the following query would rank the players by points made.

select player,sum(pts) as numpts from table

group by player order by numpts DESC limit 50

The challenging task though is to be able to solve such queries at
interactive rates for large datasets. If data is not indexed properly,
queries might need to “touch” essentially all records in the database
and result in queries consuming too much time for a proper interac-
tive experience. To address this challenge there are basically two al-
ternatives: (1) expand the computational power of the query engine by
adding more processors scanning the data in parallel at query time, e.g.
GPU computing; or (2) smart indexing of the data such that queries can
be solved without a full or expensive scan of the data.

In order to speed up queries, the Nanocubes [8] authors follow ap-
proach (2), and observe that the careful encoding of aggregations in a
sparse, pointer-based data structure is a fruitful alternative. They re-
port on multiple real-life use cases where data cube materializations of
large data sets could fit into the main memory of commodity laptops,
enabling aggregation queries to be computed at interactive rates.

From a high level perspective, the Nanocubes approach is all about
binning and counting. Each dimension of the data cube is modeled as a
bin hierarchy (e.g. a spatial quad-tree, a categorical flat-tree). Given a
table of records and a pre-defined binning scheme (i.e. bin hierarchies
for each dimension), we can think that a combination of bins from
different dimensions, or product bins, induce a set of records from the
orignal table. In our example, if we think each team is a bin in the
team dimension, and each player is a bin in the player dimension,
the product bin (CLE, L. James) induces records 1 and 3 of the
table. The nanocubes idea, as well as any explicit encoding of a data
cube, is to pre-compute a certain measure of interest for each product

bin based on the records that are incident to it. Here, the measure
could be simply the number of shots (CLE, L. James) 7! 2, or
the number of points (CLE, L. James) 7! 3.

The main drawback of an explicit data cubes as proposed by [8]
is clear: even a minimal representation of a data cube tends to grow
exponentially with the addition of new dimensions. On the other
hand, from a practical perspective, there seems to exist a sweet spot
in terms of computing resource utilization where the application of in-
memory materialized data cubes can really be the driving engine of
interactive exploratory experiences that would otherwise require pro-
hibitively larger amounts of infrastructure.

4 TOPKUBE

In this work we investigate the use of in-memory data cubes to drive an
important use case for visualization that, to the best of our knowledge,
was not fine tuned before. Namely, if we perform a multi-dimensional
selection that results in millions of objects, how can we efficiently
obtain a list of the top-k most relevant objects with respect to our mea-
sure of interest. For example, consider the selections we made on the

2



To appear in IEEE Transactions on Visualization and Computer Graphics

basketball court example in Figure 1. We want to compare the top-
20 players that take shots from the left 3-point corner (orange) versus
players that take shots from the right 3-point corner (blue). In this
case, knowing that there are only a few hundred players in the NBA
each year, it would not be computationally expensive to scan all play-
ers to figure the top 20, but there are many other cases such as GitHub
projects, Flickr images, or microblog hashtags, where having to scan
millions of objects can result in unacceptable latencies.

4.1 TOPKUBE vs. Nanocubes
The use case considered by the original Nanocube data structure was
that of multi-dimensional selections that resulted in a large number of
data records, whose aggregated counts would be presented to the user
in a variety of means: as pixel values on a heatmap, as categorical
values in a barchart, or as temporal values in a time series line plot.
The use case we have in mind here is different: the multi-dimensional
selection in our case might result in hundreds of thousands to millions
of object-value pairs, and we are not interested in presenting all these
pairs to the user, but only the top valued pairs. More concretely, the
problem we are interested in here is to quickly produce visalizations
like Figure 1 even if the NBA had millions of players.

Each dimension in the original Nanocube is modeled as a hierarchy

of bins, with the exception of time. Each product bin, i.e. the combina-
tion of one selection from each dimension, is instead mapped to a time
series, which is implemented as a summed-area table. In TOPKUBE,
in order to speed up top-k queries, we propose that each product bin

should be mapped not to a time series, but to a rank-aware multi-set.
More formally, if b is a product bin, the original Nanocube would
store a mapping like:

b 7! ((t1,v1),(t2,v1 + v2), . . . ,(tm,v1 + . . .+ v

m

)) [NANOCUBE]

where t

i

would be increasing time bins and v

i

would be the measure of
interest (e.g.record count). The cumulative values were stored there to
allow for fast retrieval of value sums for any time interval. In the case
of TOPKUBE, we want each product bin b to be mapped to:

b 7!
(

lst = ((q1,v1,s1), . . . ,(q j

,v
j

,s
j

)),sum =
j

Â
i=1

v

i

)
[TOPKUBE]

With this encoding, to access the value of a query key q in b we per-
form a binary search in lst (assuming it is ordered by q

i

); the i-th top
ranked object in b is the s

i

-th entry in lst and takes constant time (fast
random access to s

i

+ fast random access to ks
i

and vs
i

).

4.2 Top-K From Ranked Lists
With TOPKUBE, we can easily produce a list of top-k ranked objects
when a multi-dimensional selection results in a single product-bin b ,
but in general that does not happen. For example, in Figure 2, we
show a common case in a spatiotemporal dataset: a 624 bin selection
in space and 3 bins in time, which potentially results in a 1872 product
bin selection. The pre-stored ranked lists we have for each b should
help speed up the top-k query, but the task is not as trivial as collecting
top-k resulting objects in O(k) steps. To ease the exposition, and for
the lack of a consistent name in the literature reviewed, we refer to this
problem as Top-k From Ranked Lists or TKFRL.

4.3 Threshold Algorithm
The source of the difficulty for the TKFRL problem is that, for any
key object q, its final measure v for our top-k ranking purposes might
be broken into m summands v = v1, . . .vm

, one for each product-bin in
the selection. Although we have an efficient way to access these sum-
mands in decreasing order (by putting all m lists into a heap/priority
queue and popping the next largest key and summand), this does not
directly imply we are going to find the measures for the top-k keys
efficiently. Fortunately, a lot is known about the TKFRL problem [5].
The famous threshold algorithm or TA (which was explained and an-
alyzed in the first database paper to win the prestigious Gödel Prize
in 2014) is known to be optimal in a strong sense: no other algorithm

Fig. 2. Dimensions of space and time represented as bin hierarchies.
Bspace are bins in a quad-tree hierarchy: we show an annulus selection
around Madison Square Garden corresponding to 624 bins; Btime is a
binary hierarchy; we show 3 bins corresponding to the interval [3,6].

can access less data than the threshold algorithm does and still obtain
the correct answer. The threshold algorithm consists of the following
steps: (1) find key q of the next largest summand; after finding the
other summands of q in the other m� 1 b ’s, compute the key-value
pair (q, v); (2) Insert the key-value pair found in the previous step into
a buffer R that maintains only the top-k key-value pairs it has seen; (3)
update threshold t to be the sum of the available largest m summands
(an upper bound for the total measure of a yet unseen key); (4) if R

has k key-value pairs and the smallest valued pair is larger than t , then
report R as the top-k result, otherwise go to Step 1.

Although TA has ideal theoretical guarantees, there is an assump-
tion that all m lists contain summands for all keys. This is natural given
the application usually associated with TA: the m lists corresponded to
m attribute-columns of a table and all keys (rows) should have an en-
try in each of those columns. However, the instances of the TKFRL
problem that we observed were quite sparse: one key q is present in
only a small fraction of the m lists, thus reducing the efficiency of TA.

4.4 Key Sweep Algorithm
Let us step back and suppose we do not store the ranking information,
s , in b . If we go back to a rank-unaware data structure, how can we
solve the top-k problem? One way, which we refer to as as the Naive

Algorithm is to traverse all the b ’s in the selection, and keep updating a
dictionary structure of key-value pairs (we would increment the value
of a key already in the dictionary with the current summand we found
for that key in the current m-bin). Once we finish traversing all b ’s,
we would sort the keys by their values and report the top-k ones. The
Naive algorithm is correct, but inefficient. It uses memory proportional
to all the keys in all m lists, and this number might be much larger than
k (e.g. millions of keys instead of 100 if we ask for k = 100).

A more efficient way to do the union of m lists (that are sorted by
keys) is to add all these lists into a heap/priority queue where the list
with the smallest key is on the top of the heap. If we keep popping
the next smallest key and summand from all the m lists, we will sweep
all key-summand pairs in key increasing order, and every time we get
a new (larger) key, we can be sure we know the total measure of all
previous keys. Using this approach, we can maintain a result list with
at most k buffers instead of a dictionary with all keys in all lists. We
will refer to this approach as the Key Sweep Algorithm. Note that this
algorithm scans all the summands, as does the Naive Algorithm, but it
does not need a potentially large buffer to solve the top-k problem.

4.5 Hybrid Algorithm
The problem with the direct application of TA to solve the TKFRL
problem is that in sparse instances, for each good candidate key to
be in the top-k result, the algorithm performs a binary search for the
other m�1 summands for that same key. If every key had a summand
present in all m lists (dense instance), these cycles would be useful, but
in a sparse instance of the problem, these are mostly wasted cycles.
In typical instances of the TKFRL problem (e.g., what are the most
active GitHub projects in the west coast of the U.S.?), we observe that
on average each key is in less than 3% of the m-lists in the selection.

3



On the other hand, we note that the Key Sweep Algorithm wastes no
cycles and only accesses summands that are present in the data. In
order to get the best results in our experiments, we followed a hybrid
approach between TA and the Key Sweep Algorithm.

If the problem instance is dense, our Hybrid Algorithm will simply
run the TA directly. Otherwise, we use the Key Sweep Algorithm to
merge the s smallest lists (from the m original lists) into one list s

⇤ and
then run TA with the largest m�s lists plus s

⇤. The intuition is that we
reduce the number of bins in order to raise the density of the TKFRL
problem instance, and avoid all the access misses that pure TA would
have. For example, think about the 624 spatial bins in Figure 2. We
typically expect the smaller squares in that spatial selection to have
less data than larger squares. The idea would be to merge all the lists
of the smaller squares to make the problem instance dense for TA.

To detect the sparseness of a problem instance, we note that a lower
bound for the number of keys is given by the length ` of the largest
of the m lists. The total number of summands in a problem instance
is the sum n of the lengths of all the m lists. Thus, an upper bound
of the density of the TKFRL instance is given by n/(m⇥ `). The idea
of the hybrid approach is to replace m by a smaller m

0 to raise the
density estimate to a certain desired level q . We have experimented
with different qs and get very good results with q = 0.25.

5 EXPERIMENTAL RESULTS

Our system was implemented using a distributed client-server archi-
tecture. All rendering is performed on the client side, while the server
is optimized to handle large-scale data efficiently and serve data re-
quests to the clients. This design enables our system to scale well with
an increase in the number of clients and/or data volume.

The server instance is powered by a C++11 executable that can re-
ceive and fulfill data requests over HTTP. It includes an API for client-
server communication, thus, virtually supporting all types of clients,
ranging from desktop to mobile applications. In our prototype, we im-
plemented a browser-based client using HTML5, D3, and WebGL for
its portability and the highly parallel architecture of GPUs.

5.1 Datasets
The datasets used in our case studies are freely available and allow
the extraction of geotagged keywords: articles on Wikipedia, tags
on Flickr, projects on Github, and hashtags on microblogs. Those
keywords were then used as objects in the construction of our TOP-
KUBE data structure. A summary of all datasets can be seen in Table
1: the number of objects, the amount of memory to build TOPKUBE,
the original size of the data file, the number of keywords, and the con-
struction times are shown respectively.

Dataset Objects Mem Size Keys Time
Wikipedia 112M 114G 1.2G 3.0M 5.2h
Flickr 84M 20G 532M 1.6M 3.9h
Github 58M 14G 329M 1.5M 3.2h
Hashtags 40M 53G 766M 4.7M 1.7h

Table 1. Summary of datasets used for our experiments.

5.2 Performance
In order to demonstrate the potential of TOPKUBE and which algo-
rithm works best when solving top-k queries in the interactive setups
envisioned, we focus here on the Hashtags dataset, although perfor-
mance across all datasets was similar. The Hashtags dataset has largest
number of distinct keywords (4.7M) and the top-k problem instances
coming from exploratory sessions on this dataset should tend to be
harder (i.e. product-bins with longer lists of objects). As a baseline
reference to estimate the TOPKUBE performance, we also loaded the
Hashtags dataset into a PostGIS table and created a mechanism to run
the exact same queries in both engines (TOPKUBE and PostGIS). The
algorithms we implemented into TOPKUBE were the Threhold Algo-
rithm or TA (Section 4.3), Key SWEEP Algorithm (Section 4.4), and
the HYBRID Algorithm or (Section 4.5).

The experiment we ran was to collect 100 top-k queries from a in-
teractive session where multiple spatiotemporal selections were cho-
sen. These selections included large regions of space and time in or-
der to stress the engine with harder problems. The companion video
of this paper shows some of the queries we collected for this exper-
iment. Once these queries were collected, we re-executed them in a
serial fashion using the different algorithms inside TOPKUBE and the
PostGIS engine. The query results in all of these cases were the same.
The total time to execute these queries in a serial fashion were: Post-
GIS 7! 1h05min; TA 7! 12min; SWEEP 7! 31.6s; HYBRID-0.75 7!
22.2s; HYBRID-0.50 7! 15sec; HYBRID-0.25 7! 8.3sec. It is clear
from these results that neither PostGIS nor TA were fast enough to
provide an interactive experience, while both SWEEP and the different
HYBRID runs were. In Figure 3 we show sorted query times for all the

Rank of query (independently sorted by query time)

Q
ue

ry
 ti

m
e 

lo
g(

m
ilis

ec
on

ds
)

0 20 40 60 80 100

0

1

2

3

4

5

1ms

10ms

100ms

1s

10s

100s

PostGIS
Threshold Algorithm
Sweep
Hybrid 0.75
Hybrid 0.50
Hybrid 0.25

Fig. 3. Query times for top-k algorithms when solving 100 queries from
an interactive session for k = 32 (see video). The x-coordinate i indicates
the i-th fastest query for the corresponding algorithm.

100 queries from our experiment for each algorithm. With this plot we
are able to see that the HYBRID algorithm with varying q thresholds
had query times consistently smaller then both TA and SWEEP. This
fact confirmed our hypothesis that top-k queries can be solved exactly
in important use cases by adding rank information to the index. At the
same time this fact seems obvious, this study shows that a natural use
of rank information as done by TA does not yield a speed up. Only a
combination of the strenghts of TA and SWEEP illustrated by the HY-
BRID approach gave the speed up we expected. Although the lines in
Figure 3 do not cross, a few of the queries were significantly slower in
HYBRID than in SWEEP. We plan to study these instances and find a
stronger hybrid approach than the simple threshold we suggest here.

6 CONCLUSION

As user-generated online data continues to grow at incredible rates,
ranking objects and information has never played such an important
role in understanding our culture and the world. Although previous
techniques have been able to create such rankings, they are ineffi-
cient and unable to be used effectively during an interactive explo-
ration of the ranked data. We have introduced TOPKUBE, an enhanced
in-memory data cube that is able to generate ranked lists up to an or-
der of magnitude faster than previous techniques. We have explored
previous merging algorithms for creating these rankings, as well as
designed improved algorithms for even greater interactivity. A careful
experimentation of our techniques with multiple datasets has demon-
strated its value. To date, we have not optimized the increased memory
consumption of TOPKUBE versus other recent in-memory data cubes.
We believe there are opportunities to perform some compression of the
internal data structure which could lead to significant memory savings.

4



To appear in IEEE Transactions on Visualization and Computer Graphics

REFERENCES

[1] W.-T. Balke and W. Kießling. Optimizing multi-feature queries for image
databases. In Proc. of the Intern. Conf. on Very Large Databases, 2000.

[2] D. B. Carr, R. J. Littlefield, W. Nicholson, and J. Littlefield. Scatterplot
matrix techniques for large n. Journal of the American Statistical Associ-

ation, 82(398):424–436, 1987.
[3] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query

processing: an experimental evaluation. Proceedings of the VLDB En-

dowment, 6(3):217–228, 2013.
[4] A. Dix and G. Ellis. by chance enhancing interaction with large data sets

through statistical sampling. In Proceedings of the Working Conference

on Advanced Visual Interfaces, pages 167–176. ACM, 2002.
[5] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for

middleware. Journal of Computer and System Sciences, 66(4):614–656,
2003.

[6] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Data Mining

and Knowledge Discovery, 1(1):29–53, 1997.
[7] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query

processing techniques in relational database systems. ACM Computing

Surveys (CSUR), 40(4):11, 2008.
[8] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for real-time ex-

ploration of spatiotemporal datasets. Visualization and Computer Graph-

ics, IEEE Transactions on, 19(12):2456–2465, 2013.
[9] Z. Liu and J. Heer. The effects of interactive latency on exploratory visual

analysis. Visualization and Computer Graphics, IEEE Transactions on,
20(12):2122–2131, Dec 2014.

[10] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big
data. In Computer Graphics Forum, volume 32, pages 421–430. Wiley
Online Library, 2013.

[11] T. Mostak. An overview of mapd (massively parallel database). In White

paper. Massachusetts Institute of Technology, 2013.
[12] S. Nepal and M. Ramakrishna. Query processing issues in image (multi-

media) databases. In Data Engineering, 1999. Proceedings., 15th Inter-

national Conference on, pages 22–29. IEEE, 1999.
[13] P. J. Rousseeuw and A. M. Leroy. Robust regression and outlier detection,

volume 589. Wiley. com, 2005.
[14] M. Shmueli-Scheuer, C. Li, Y. Mass, H. Roitman, R. Schenkel, and

G. Weikum. Best-effort top-k query processing under budgetary con-
straints. In Data Engineering, 2009. ICDE’09. IEEE 25th International

Conference on, pages 928–939. IEEE, 2009.
[15] B. Shneiderman. Dynamic queries for visual information seeking. Soft-

ware, IEEE, 11(6):70–77, 1994.
[16] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis,

and visualization of multidimensional relational databases. Visualization

and Computer Graphics, IEEE Transactions on, 8(1):52–65, 2002.
[17] C. Stolte, D. Tang, and P. Hanrahan. Multiscale visualization using data

cubes. Visualization and Computer Graphics, IEEE Transactions on,
9(2):176–187, 2003.

[18] T. Wu, D. Xin, and J. Han. Arcube: supporting ranking aggregate queries
in partially materialized data cubes. In Proceedings of the 2008 ACM

SIGMOD international conference on Management of data, pages 79–
92. ACM, 2008.

[19] D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k queries with multi-
dimensional selections: The ranking cube approach. In Proceedings of

the 32nd international conference on Very large data bases, pages 463–
474. VLDB Endowment, 2006.

5


	Introduction
	Related Work
	Binning and Counting
	TopKube
	TopKube vs. Nanocubes
	Top-K From Ranked Lists
	Threshold Algorithm
	Key Sweep Algorithm
	Hybrid Algorithm

	Experimental Results
	Datasets
	Performance

	Conclusion

