
Data Structures for the
Interactive Visual Analysis of Urban Data

DISSERTATION

Submitted in Partial Fulfillment of

the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY (Computer Science)

at the

NEW YORK UNIVERSITY
TANDON SCHOOL OF ENGINEERING

by

Fabio Miranda

September 2018

iii
Microfilm or other copies of this dissertation are obtainable from

UMI Dissertation Publishing

ProQuest CSA

789 E. Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

iv
Vita

Fabio Miranda was born in the city of Belo Horizonte, Brazil in June 1985. He
has a B.Sc. in Computer Science from the Federal University of Minas Gerais,
and a M.Sc. in Computer Science from Pontifical Catholic University of Rio de
Janeiro. While completing his master studies, he worked as a researcher and
software engineer developing visualization tools for the oil industry. He started his
Ph.D. in September 2012, working in a variety of areas, including large-scale data
analytics, data management and data visualization. He has received an award for
SIGMOD 2018 Best Demonstration and the Pearl Brownstein Doctoral Research
Award. His work has been featured in The New York Times, The Economist and
Architectural Digest, among others.

Webpage: https://fmiranda.me/

https://fmiranda.me/

v
Acknowledgements

This dissertation would not be possible without the unconditional support from
my mother, father, wife and family. Even thought my parents felt the pain of
seeing a son move to a different state (and then to a different country), they always
encouraged me to pursue my goals.

I would like to especially thank my advisor, Cláudio Silva, for the opportunity to
join his group at New York University, the continuous support and guidance through-
out my Ph.D. studies, and the opportunity to work on incredible projects. I would
also like to especially thank the members of my Ph.D. committee, Juliana Freire,
Enrico Bertini and Huy T. Vo, for their valuable feedback.

During the course of my Ph.D. studies I had the opportunity to work with
incredible researchers that were crucial in my training as a researcher. Among these,
I would like to especially thank Harish Doraiswamy, Marcos Lage and Lauro Lins.

I would like to thank Waldemar Celes, from Pontifical Catholic University of
Rio de Janeiro, and Luiz Chaimowicz, from Federal University of Minas Gerais, for
guiding me through my first steps in my academic life during the M.Sc and B.Sc.

I would also like to express my gratitude to the mentors that I had during the
internships: Patricia Crossno, from Sandia National Laboratories, James Klosowski,
from AT&T Labs Research, Bruna D’Amora, from IBM Research, and Venkat Vish-
wanath, from Argonne National Laboratory.

Among the collaborators in the research projects I was part of, I would also like
to thank: Juan Pablo Bello, Charlie Mydlarz, Justin Salamon, Yitzchak Lockerman,
Luc Wilson, Mondrian Hsieh, Abdullah Kurkcu, Kaan Ozbay, Bruno Gonçalves
and Kai Zhao.

I would also like to thank the funding agencies that supported the work presented
here: National Science Foundation (NSF awards CCF-1533564, CNS-1229185, CNS-
1544753, CNS-1730396), and C2SMART.

Finally, I would like to thank all friends and members of the VIDA Lab for the
amazing research environment and incredible moments inside and outside the lab.

Fabio Miranda
September 2018

vi

To my mother and father.

vii

ABSTRACT

Data Structures for the
Interactive Visual Analysis of Urban Data

by

Fabio Miranda

Advisor: Prof. Cláudio T. Silva, Ph.D.

Submitted in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy (Computer Science)

September 2018

A modern city is the combination of several complex and intertwined systems:
transportation, street layouts, public utilities and land use all interact with one
another in a process that shapes and forms the city, ultimately influencing how
people occupy, move and utilize the many services provided by an urban center.
The rapid increase in urbanization in the past century has made this process much
more complex, as cities struggle to satisfy the demands imposed by an even larger
number of people. It is therefore essential to have a better understanding of different
aspects of the city, and how they change over time.

Fortunately, technological innovations have enabled the automatic collection
of a diverse set of data that captures the behavior of different components of a
city, such as its residents, existing infrastructure and the environment. This creates
new opportunities to better understand different dimensions and facets of the city.

viii
By exploring and analyzing urban data through visual analytics systems, domain
experts and stakeholders can gain new insights about the data and ultimately
the city. However, to be effective, these systems must be interactive, requiring
sub-second response times in order to maximize data set coverage during analysis,
as well as the rate in which users generate hypotheses. General approaches often
fail to drive this interactivity, either because they do not efficiently handle the
large size of the data or because they were not designed for a specific task. In this
dissertation, we present solutions to enable the interactive exploration of different
types of large urban data sets.

First, we tackle the challenge of analyzing large temporal data. Advances in
technology coupled with the availability of low-cost sensors have resulted in the
continuous generation of large time series from several sources. In order to visually
explore and compare these time series at different time scales, analysts need to
execute online analytical processing (OLAP) queries that include constraints and
group-by’s at multiple temporal resolutions. To enable interactive OLAP queries
over large time series, we propose Time Lattice, a memory-efficient data structure
that makes use of the implicit temporal hierarchy; it materializes a subset of a data
cube and is designed to handle streaming data.

Second, we consider spatiotemporal data. Social media data usually contains
not only a temporal (when) and spatial (where) dimensions, but also associated
keywords describing what is the data. A popular way to analyze such data is through
the ranking of the top objects within a spatial and temporal selection. For example,
a popular way to analyze Twitter social media data is to compute the most popular
hashtags in a given region (e.g., neighborhood) and time (e.g., summer). For this,
we propose TopKube, a rank-aware data cube that enables the computation of such
queries interactively by merging pre-computed ranked lists using an hybrid approach
that combines a sweep merging algorithm with Fagin’s Threshold Algorithm for
Top-k queries.

Next, we explore the challenges of analyzing 3D data. The rise of collaborative
mapping initiatives has created data sets that go beyond the usual flatland spa-
tiotemporal data, capturing also the 3D geometry of the city itself. This creates
the perfect opportunity to explore new urban properties at a scale that was not
possible before. One of these properties is the impact of shadows from buildings.

ix
Shadows can potentially infringe on the “right to light” of other citizens in the
community through the occlusion of direct sunlight by shading public spaces. De-
termining its effects requires the accumulation of shadows over time across different
periods in a year. For this, we propose Shadow Accrual Maps, a data structure
that uses the properties of sun movement to track the changing position of shadows
within a fixed time interval in order to efficiently compute shadow accumulation.

Finally, we present the first steps towards visualizing the different views of a city.
Using a data set composed of over 40 million street-level images captured by cars
in New York City over a period of one year, we create an interactive visualization
framework for exploring the various visuals offered by a city. By integrating the
images with urban data sets, we allow the interactive exploration of city views
under different constraints, such as weather, building construction permits and
noise complaints.

We demonstrate the utility of our proposals through a number of case studies
set in New York City, highlighting its usefulness in the study of common urban
problems, such as noise and shadow impact on public spaces.

x

Contents

Vita . iv
Acknowledgements . v
Abstract . vii
List of Figures . xv
List of Tables . xvi

1 Introduction 1
1.1 Contributions . 4
1.2 Outline . 6

2 Temporal Data: Interactive Visual Analysis of Large Time Series 7
2.1 Related Work . 11
2.2 Time Lattice . 14

2.2.1 Data Structure . 14
2.2.2 Querying . 20
2.2.3 Extensions . 22

2.3 Noise Profiler . 25
2.3.1 Sound Measurement Data 25
2.3.2 Desiderata . 26
2.3.3 Visual Interface . 26
2.3.4 Query Backend . 27

2.4 Experimental Evaluation . 28
2.4.1 Experimental Setup . 28
2.4.2 Scalability . 29
2.4.3 Comparison with State of the Art 32

2.5 Case Studies . 32

xi
2.5.1 Exploring Noise Patterns via Grouping 32
2.5.2 Feedback . 37

2.6 Discussion . 38

3 Spatiotemporal Data: Real-Time Ranking of Geotagged Keywords 39
3.1 Related Work . 41
3.2 Motivation . 44

3.2.1 Generality vs. Speed . 44
3.3 Multi-Dimensional Binning Model 46

3.3.1 Measure on a multi-dimensional binning model 48
3.3.2 Nanocubes . 50

3.4 TopKube . 51
3.4.1 Top-K from Ranked Lists 54
3.4.2 Sweep Algorithm . 55
3.4.3 Threshold Algorithm . 56
3.4.4 Hybrid Algorithm . 58

3.5 Experimental Results . 60
3.5.1 Performance . 60

3.6 Case Studies . 61
3.7 TopKube-Benchmark . 64

3.7.1 Benchmark Characteristics 64
3.7.2 Benchmark Performance . 66
3.7.3 Speedup Relative to k . 69
3.7.4 Speedup Relative to Keys 70
3.7.5 Speedup Relative to Ranks 71

3.8 Discussion . 71

4 City Geometry Data: Efficient Accumulation of City-Scale Shad-
ows Over Time 73
4.1 Related Work . 76
4.2 Temporal Shadows . 79

4.2.1 Shadow Accumulation . 79
4.2.2 Properties of Temporal Shadows 80

4.3 Shadow Accrual Maps . 82

xii
4.4 Inverse Accrual Maps . 85
4.5 Handling Large Time Intervals . 87
4.6 Shadow Profiler . 90

4.6.1 Visualization Interface . 90
4.6.2 Analysis Measures . 92

4.7 Implementation and Experiments 93
4.7.1 Implementation . 93
4.7.2 Experiments . 94

4.8 Case Studies . 98
4.8.1 Impact of Buildings on Central Park 99
4.8.2 Citywide Shade Vs. Shadow 102

4.9 Discussion . 104

5 Image Data: Exploring the Myriad Visuals of a City 106
5.1 Related Work . 108
5.2 Street-level Images . 109
5.3 Visuals of a City . 111

5.3.1 Joining Images and Urban Data 112
5.3.2 Image Matching . 113

5.4 Image Explorer . 114
5.4.1 Desiderata . 114
5.4.2 Visual Interface . 114
5.4.3 Query Backend . 115

5.5 Case Studies . 116
5.5.1 Shadow Impact . 116
5.5.2 Noise Complaints . 117
5.5.3 Development of a City Block 118

5.6 Discussion . 119

6 Conclusions and Future Work 120

Appendix A Additional Shadow Map Experiments 122

xiii

List of Figures

1.1 Broad Street cholera map . 1
1.2 Visual Analytics Tools . 3
1.3 Overview of the types of urban data explored in this dissertation . . 4

2.1 Noise Profiler overview . 8
2.2 Data cube with D = {hour,dayweek,month} 13
2.3 Hasse diagram . 17
2.4 Pseudo-code for the aggregate query. 20
2.5 Drilldown operation . 21
2.6 Histogram to support joins in queries 23
2.7 Expanded materialization . 24
2.8 Time Lattice size . 30
2.9 Time Lattice query execution time 30
2.10 Time Lattice update time . 31
2.11 Daily noise patterns . 33
2.12 Noise patterns on weekdays vs. weekends 34
2.13 Comparing live data with ambient noise baselines 35

3.1 Ranking NBA players by number of shots 46
3.2 Space and time bin hierarchies . 49
3.3 Concrete example of a TopKube . 53
3.4 Pseudo-code for the Sweep Algorithm 55
3.5 Pseudo-code for the Threshold Algorithm 57
3.6 Pseudo-code for the Hybrid Algorithm 59
3.7 TopKube cumulative distributions 60

xiv
3.8 Geolocated Wikipedia edits . 62
3.9 Geolocated Flickr tags . 62
3.11 GitHub exploration . 63
3.10 Twitter exploration . 63
3.12 Characteristics of the TKR problems 65
3.13 TopKube latency distribution . 67
3.14 TopKube speedup distribution of the Threshold and Hybrid algorithms 68
3.15 TopKube speedup distribution of the Hybrid algorithm 69
3.16 TopKube cumulative distribution of the speedup of the Hybrid

algorithm . 70

4.1 Shadow accumulation measures . 80
4.2 Shadow accrual map overview . 81
4.3 Shadow accrual map 3D texture . 83
4.4 Shadow accrual map interpolation 84
4.5 Inverse accrual map overview . 85
4.6 Inverse accrual maps with multiple source levels 86
4.7 Direction graph . 88
4.8 Shadow Profiler overview . 90
4.9 Shadow accumulation LOD . 91
4.10 Shadow Profiler modes of operation 92
4.11 Accuracy trade-off due to direction graph 95
4.12 Shadow accrual maps and inverse accrual maps performance evaluation 96
4.13 Impact of skyscrapers under construction south of Central Park . . 99
4.14 Impact of shadows from new skyscrapers vs. alternate scenario . . . 101
4.15 Comparison of year long gross shadows for different neighborhoods

in Manhattan . 102
4.16 Overall effect of shadows on three popular Manhattan neighborhoods104

5.1 Reflection of laundry pickup car . 107
5.2 Example of images from the Carmera data set 110
5.4 Temporal distribution of street-level images 110
5.3 Spatial distribution of street-level images 110
5.5 Spatial-temporal join . 112

xv
5.6 PatchMatch result . 113
5.7 Image Explorer overview . 115
5.8 Street-level images to analyze shadow impact in Manhattan 117
5.9 Street-level images near noise complaints 117
5.10 Development of a city block . 118

A.1 Comparison with shadow computation on a game engine 122

xvi

List of Tables

2.1 List of symbols . 15
2.2 Association functions . 18
2.3 Queries used in the experiments . 28
2.4 Time Lattice benchmark comparison 31

3.1 Example of shot statistics in NBA games 44

4.1 Sun light linear interpolation error 81
4.2 Memory requirements . 98
4.3 Weights assigned to different months to characterize shade and shadow103

1

Chapter 1

Introduction

Cities have been at the center of human organization for more than three
thousand years [1]. This concentration of people with different backgrounds and
skills living in close quarters plays a fundamental role in the creation of culture,
innovation and economical growth [2]. Today, more than ever, a city is a combination
of several complex and intertwined systems: transportation systems, housing, street
layouts, utilities and land use all interact with one another in a process that shapes
and forms the city, ultimately influencing how people occupy, move and utilize the
many services provided by an urban center. The rapid increase in urbanization in
the past century [3] has made this process much more complex, as cities struggle
to satisfy the demands imposed by an ever larger number of people.

Figure 1.1: A vi-
sualization showing
the distribution of
cholera cases around
Broad Street in 1854.

The new problems created by urban growth gave rise to
the necessity to better define and understand the city, its
problems and its dwellers. An early and iconic case of such
necessity is the Broad Street cholera outbreak. In 1854, the
district of Soho in London suffered from a growing population
and a lack of proper sanitary conditions, ultimately leading
to a cholera outbreak that killed 616 people. The prevailing
theory was that the disease was transmitted by air. The
work by epidemiologist John Snow in mapping and analyzing
the spatial distribution of cholera cases (see Figure 1.1)
was fundamental in identifying the actual cause of cholera:
contaminated water [4].

2
In the begging of the 20th century, urban sociologists also explored the urban

challenges, with studies from Max Weber on the definition of a city [5] and Louis
Wirth on what constitutes an urban way of life [6]. The seminal work by Ernest
Burgess and Robert E. Park was one of the first to use data to understand the
city and to propose a model of urban organization [7]. Wirth, Burgess, Park and
others were among the researchers of what would be named the Chicago school, a
group of urban sociologists at the University of Chicago that proposed to collect
and analyze urban-related data in the 1920’s and 1930’s [8, 9].

The importance of data only grew in the decades following the Chicago school.
Urban analyses, however, were limited to a very coarse and manually collected set
of data, that in most cases did not capture the dynamism of modern cities [10].
For instance, a popular source for urban analyses was the census data, which, in
the United States, is performed only every ten years.

In the past decade, technological innovations have enabled the automatic collec-
tion of a diverse set of data that captures the behavior of the different components
of a city, namely its residents, existing infrastructure, the environment, and in-
teractions between these elements. As a result of this, the term smart city has
been coined to describe cities that use technology as a way to make its infras-
tructure components and services more efficient [11, 12]. Initiatives such as open
data portals maintained by city agencies have democratized the access to data,
and allowed different stakeholders to engage in urban analyses [13, 14, 15, 16, 17].
Private companies are also increasingly making their data available, a sign that
more entities understand the power of open data and the potential that can be
unlocked by combining diverse sources of data [18, 19].

Such recent initiatives create new opportunities to better understand different
dimensions and facets of the city, and how they change over the course of space
and time. However, urban data analysis has often been limited to well-defined
questions, or confirmatory data analysis [20, 21]. In this analysis, a domain expert
usually formulates an hypothesis, a data scientist performs the analyses and finally
the expert inspects the results to either verify or disprove the hypothesis. Given
the complexity and sheer volume of urban data being generate, this process cannot
scale. Making an analyst wait too long for the result of its analysis might mean
breaking her flow of though, and be the difference between capturing an idea or not.

3

Figure 1.2: Examples of visual analytics tools. (a) Legible Cities: visualization
of census data [22]. (b) TaxiVis: visualization of New York City taxi trips [23].
(c) Urbane: visualization of neighborhood-level data and view impact analysis [24].

Not surprisingly, there have been several tools and techniques with the goal of
allowing for interactive exploration of urban data sets (such as the ones in Figure 1.2
and [25, 26, 27, 28, 29]). However, there are several challenges in driving and
enabling interactivity in such tools. First, it is important to understand the queries
that are most useful in the analysis process of a given data. Second, since urban data
is usually large and complex, it is necessary to design structures that are able to solve
the posed query in a small amount of time. In fact, the importance of interactivity
and low latency during analysis tasks has been studied by Liu and Heer [30]. They
conclude that even a half second difference between user input and visual display
can significantly impact visual analysis, reducing interaction and data set coverage,
as well as the rate in which users make observations, draw generalizations and
generate hypotheses. It is therefore important to have frameworks and structures
that are able to drive interactive visual analysis, specifically tailored to the task
at hand. Such systems create new opportunities for city governments and domain
experts to engage in data-driven science to better understand cities, and ultimately
improve the lives of their residents.

4

a b c d

Figure 1.3: Overview of types of data explored in this dissertation. (a) Time
series from stationary sensors. (b) Spatio-temporal data from social media. (c) 3D
geometry of the city. (d) Street-level images.

1.1 Contributions

The growth in the availability of data sets describing different urban phenomena
has create an opportunity to better understand a city and its processes. A city is
an amalgam of systems that interact at different spatial resolutions and at different
temporal scales, and this complexity is reflected in urban data, which often comes in
diverse and complex data types (see Figure 1.3). For instance, data from stationary
sensors is commonly one dimensional, while data describing the buildings and
infrastructure of the city is three dimensional. On top of that, the analyses tasks
often required when exploring urban data are computationally expensive, making
the requirement of interactivity even harder to be achieved. General approaches
often fail to drive this interactivity, either because they do not efficiently handle
the large size of the data or because they were not designed for a specific task.
In this dissertation, we focus our efforts on enabling interactive visual analyses of
applications that explore different types of data, each covering a particular aspect
of the city. Ultimately, we want to enable a deeper understanding of the different
dimensions and facets that make a city [12]. Below, we summarize the contributions
of each chapter of this dissertation.
Analyzing Temporal Data. The massive deployment of sensors throughout a
city results in the continuous stream of data as time series from up to thousands of
objects. The exploration of such data typically involves slicing and dicing the time
series over different temporal resolutions together with multiple constraints.

We propose the Time Lattice data structure [31], that makes use of the implicit
temporal hierarchy to enable interactive OLAP queries over large time series.

5
Our proposal is a subset of a fully materialized cube and is designed to handle
fast updates and streaming data. The structure is used to drive the interactivity
of Noise Profiler, a tool used to visually analyze the time series data generated
by more than 48 sensors deployed around New York City and that have been
collecting noise levels for more than a year at a high resolution. With this, we are
able to interactively compute and compare noise baselines across several temporal
dimensions of sensors deployed in different parts of the city.
Analyzing Spatiotemporal Social Media Data. The widespread use of GPS-
enabled devices has created a large volume of geotagged data. Common to social
media data, these devices attach not only a temporal dimension (when) but also a
spatial one (where) to any user-generated content. On top of that, it is common to
have several extra fields in any data generated by the user describing what is the
data. A popular way to analyze such data is through the ranking of the top objects
incident to an arbitrary spatial and temporal selection. For instance, a popular
way to analyze Twitter social media data is to compute the most popular hashtags
in a given region (e.g., neighborhood, city) and time (e.g., Christmas).

We propose TopKube [32], a rank-aware data structure that merges pre-
computed ranked lists considering spatial and temporal constraints. The structure
is used as the backend of a visual analysis tool used to interactively explore a
variety of social media data. Such tool can be used to gain new insights about the
activity and interests of people across neighborhoods.
Analyzing the 3D Geometry of the City. The rise of collaborative mapping
initiatives has created data sets that go beyond the usual flatland spatiotemporal
data. The OpenStreetMap project, for instance, makes available highly detailed 3D
geometry information about the buildings of several cities [33, 34, 35]. This creates
the perfect opportunity to create and explore new urban properties at a scale that
was not possible before. One of these properties is the impact of shadows from
buildings. Shadows can potentially infringe on the “right to light” of other citizens
in the community through the occlusion of direct sunlight by shading public spaces.
This can inhibit vegetation growth and reduce solar energy potential. On the other
hand, shadows can also be beneficial by reducing the urban heat island effect, or
by providing a comfortable environment for park goers. Determining the effects of
shadows requires the accumulation of shadows over time across different periods.

6
We propose Shadow Accrual Maps [36], a data structure that uses the properties

of sun movement to track the changing position of shadows within a fixed time
interval in order to efficiently compute shadow accumulation. The structure is used
to develop an interactive visual analysis system Shadow Profiler, targeted at city
planners and architects that allows them to test the impact of shadows for different
development scenarios.
Exploring the Visuals of a City. The previous applications focus on under-
standing the city through the measuring and quantification of a subset of attributes
from interesting urban data. These analyses, however, fail to capture the visual
experiences of city dwellers: how does a city look during early mornings or snowy
afternoons, across different neighborhoods? By using a data set composed of over
40 million images captured by cars in New York City over a period of one year, we
take the first steps in creating a visualization framework for exploring the various
visuals offered by a city. By integrating the images with other urban data sets, we
allow for the interactive exploration of city views under different constraints, such
as weather.

1.2 Outline

Chapter 2 presents the Time Lattice data structure for the interactive visual
analysis of large time series. Chapter 3 describes the TopKube rank-aware data
cube for the real-time ranking of geotagged keywords, such as Tweets. Chapter 4
presents Shadow Accrual Maps, for the efficient accumulation of city-scale shadows
over time. Chapter 5 presents a system for the exploration of a large collection
of street-level images. Finally, Chapter 6 concludes the dissertation, highlighting
potential future works.

7

Chapter 2

Temporal Data: Interactive
Visual Analysis of Large Time
Series

With the massive adoption of the Internet of Things (IoT) in various scenarios
ranging from smart home devices and smart cities to medical and healthcare
applications, interactive visualization frameworks are becoming paramount in the
exploration and analysis of the data generated by these systems. Any such IoT
setup continuously transmits data as a time series from tens and hundreds up to
thousands of objects (or sensors). The exploration of these data typically requires
complex online analytical processing (OLAP) queries that involve slicing and dicing
the time series over different temporal resolutions together with multiple constraints
and custom aggregations. The use of a visual interface adds an additional constraint:
the queries must be interactive, since high latency queries can break the flow of
thought, making it difficult for the user to effectively make observations and generate
hypotheses [30].

In this chapter, we are specifically interested in the analysis of time series from
acoustic sensors deployed to help map and understand the noisescape in cities.
Noise is an ever present issue in urban environments. Besides being an annoyance,
noise can have a negative effect on education and overall health [37]. To combat
these problems, cities have developed noise codes to regulate activities that tend to
produce sounds (see e.g., [38, 39]). To help monitor noise levels in New York City,

8

Broadway Av.

Construction site

Figure 2.1: Using Noise Profiler to analyze OLAP queries over acoustic data from
sensors deployed in New York City. A group-by hour is used as a baseline for
ambient noise (smooth line), highlighting the difference between the noise profile
of two locations during weekdays. One sensor (blue) is close to a main road
(Broadway Av.) and has a constant dBA level throughout the hours of the day; the
other sensor (orange) is close to a major construction site and has a distinctly higher
dBA level during construction hours between 7 a.m. and 5 p.m. The live streaming
data (fluctuating line) can be used to get instantaneous information about the
noise level captured by the sensors, and inform city agency noise enforcement teams
about possible noise code violations such as construction sites operating outside of
their allotted construction hours.

as well as to aid government agencies in regulating noise throughout the city,
researchers part of the Sounds of New York City (SONYC) project have developed
and deployed low cost sensors that have the ability to measure and stream accurate
sound pressure level (SPL) decibel data at high temporal resolutions (typically
every second) [40, 41, 42]. Thirty six such sensors have been collecting data for
over a year, in addition to another twelve new sensors that have been deployed
since. As the size of this network continues to grow, the amount of data produced
by the sensors becomes virtually unbounded.

This necessitates the ability to handle analysis queries efficiently on such large
time series data, in particular, the more complex OLAP queries that require
aggregations of the data across multiple temporal resolutions. For example, noise
enforcement agencies can assess a breach if the noise level is greater than the
ambient background noise. However, the ambient background noise patterns are
spatially localized and vary depending on the time (e.g., peak hours, night time,
weekdays, weekends, etc.). So, to identify these patterns over weekdays, as shown

9
in Figure 2.1, the following query is issued using a visual interface over data from
sensors present in the different regions of interest:

select time series during weekdays groupby hour

Furthermore, not only can the user restrict the time range over which to
perform the above query (e.g., in Figure 2.1, the time range is from October 2017
to December 2017), but depending on the location and its conditions (e.g., tourist
spots), more constraints might also be interactively added to this query. Since users
can continuously alter the constraints through the visual interface, it is crucial that
these queries have low latency to enable seamless interaction.
Problem Statement and Challenges. The goal of this work is to design a
time series data structure that supports OLAP queries and has the following
important properties:

1. Interactive queries;

2. Interactive updates from new data; and

3. Low memory overhead.

Two common approaches to support OLAP queries are to use either database
systems catered for time series, or data cube-based solutions. However, neither of
the approaches satisfy all of the above requirements that are crucial for real-time
visual analysis of the data.

Traditional time series databases [43, 44, 45, 46], by supporting the powerful
SQL-like syntax, can execute a wide range of queries including the OLAP queries
with temporal constraints that are of interest in this work. They are often memory
efficient, and support updates over new data. To execute a given query, these
systems typically use an index to first retrieve intermediate results based on the
constraints. The query results are then computed by explicitly aggregating the
intermediate results. Unfortunately, such strategy fails to be interactive when
handling data at the scale that is now available (see Section 2.4).

Data cube-based structures [32, 47, 48, 49], on the other hand, have extremely
low latency to OLAP queries. However, the size of these data structures increases
exponentially with the number of dimensions. In case of a time series, the dimensions

10
correspond to the discrete temporal resolutions for a time series. Moreover, to
support temporal constraints in these queries, the time resolution of these constraints
should also be a dimension of the cube. For example, specifying the time period
of interest with an accuracy up to a minute requires minute to be a dimension of
the data cube. This further increases the space overhead. While this might be
admissible when working with a single time series, it becomes impractical when
working with several tens to hundreds of time series that is now commonplace
with IoT systems. Additionally, the more practical memory-optimized data cube
structures [47, 48] do not support updates with new (or streaming) data, thus
requiring the re-computation of the entire structure every time. Given that the cube
creation time can take minutes even for reasonably small data sizes, this approach
becomes impractical for handling multiple large streaming time series data.
Contributions. In this chapter, we present a new data structure, Time Lattice,
that can perform OLAP queries over time series at interactive rates. The key
idea in its design is to make use of the implicit hierarchy present in temporal
resolutions to materialize a sub-lattice of the data cube. This helps avoid the curse
of dimensionality common with other cube-based structures and results in a linear
memory overhead, while still being able to conceptually represent the entire cube.
This drastic reduction in memory also allows us to augment our data structure
with additional summaries, thus supporting the computation of measures that are
otherwise not easily supported. More importantly, unlike existing approaches, our
data structure allows constant amortized time updates.

To demonstrate the effectiveness of Time Lattice, we develop Noise Profiler, a
proof of concept web-based visualization system, that is being used in the SONYC
project to analyze acoustic data from New York City.

To summarize, our contributions are as follows:
• We introduce Time Lattice, a data structure that supports multi-resolution

OLAP queries on time series at interactive rates. It has a linear memory
overhead, and supports constant amortized time updates with new data.

• We show experimental results demonstrating both the time as well as space
efficiency of Time Lattice.

• We develop Noise Profiler, a web-based visualization system to simultaneously
analyze multiple streams of data generated from the SONYC sensors. Note that,

11
without the underlying efficient data structure, it would not be possible to
visually analyze such multiple streams in real time.

• We demonstrate the utility of Time Lattice through a set of case studies per-
formed by subject matter experts, and which are of interest to the end users of
the SONYC project.

2.1 Related Work

Time Series Databases. Several databases have been proposed to facilitate
data acquisition and data querying of time stamped data. Their architecture
and design vary greatly depending on their goal. One class of database systems
such as tsdb [50], Respawn [51] and Gorilla [43] are primarily concerned with
providing the user with monitoring capabilities, and lack support for complex
analytical queries. Respawn [51] proposes a multi-resolution time series data store
to efficiently execute range queries. While it efficiently speedup range queries, it
does not support aggregations (such as group-by’s) over any temporal resolution.

One of the most popular database to support analytical queries on time series
is InfluxDB [45], which offers a SQL-like language for queries, including rollups and
drilldowns. KairosDB [46] is another popular time series database that uses Apache
Cassandra for data storage, and provides much of the same features as InfluxDB.
Timescale [52], on the other hand, builds on top of the popular Postgres to offer a
database solution tailored for time series. As we show later in Section 2.4, a major
drawback of these solutions is that they cannot drive interactive visualization, with
complex OLAP queries requiring several seconds to execute. For a more detailed
survey on existing time series data management systems, we refer the reader to the
following surveys by Jensen et al. [53] and Bader et al. [44].
Data Cube. Data cube [54] is a popular method designed specifically to handle
OLAP analytical queries. It pre-computes aggregations over every possible com-
bination of dimensions of a data set in order to support low-latency queries. It
has been extended to support data sets from different domains, such as graphs [55]
and text [56]. The main drawback of a data cube is the exponential growth of the
cube with increasing dimensions making them impractical when working with large
data sets. A common approach to reduce the size of a data cube is to materialize

12
only a subset of all possible dimension combinations. One such approach, called
iceberg cube [57], only stores aggregations that satisfy a given condition (specified
as a threshold), and discards any values not above this threshold. While this
approach is suitable for the analysis of historical data, updates become unfeasible
since new data dynamically changes the aggregation requiring access to previously
discarded values.

More recently, with the focus on spatio-temporal data, several approaches have
been proposed to deal with the curse of dimensionality. Nanocube [47] uses shared
links to avoid unnecessary data replication along the data cube. However, the
above memory reduction scheme is not sufficient to reduce the structure size when
considering high resolution, dense time series typically available from IoT devices
(see Section 2.4). Hashedcube [48], on the other hand, uses pivots to efficiently
compute a subset of the aggregations on the fly from the raw data, rather than
pre-computing all of them, thus achieving a considerably lower memory footprint.
To do this, it requires the data to be sorted according to its dimensions. While
both nanocube and hashedcube support low latency queries capable of driving
interactive visualizations, they cannot handle data updates. Han et al. [58] tackle
the memory explosion by restricting the analysis to a temporal window. This is
accomplished by a data cube that, while updating new data points, discards old
points (and the corresponding aggregations) based on a user defined retention
policy. A similar retention approach is also used by Duan et al. [59]. While this
approach is suitable for monitoring applications requiring analysis on recent history,
it relies on approximate queries and cannot be used for historical analysis.

Our goal is have a data structure that supports real-time queries for both
historical analysis as well as monitoring applications, while still being memory
efficient. To accomplish this, we choose a materialization of the data cube based on
the intrinsic temporal hierarchy that enables constant amortized time updates, as
well as real-time query execution. However, note that the proposed data structure is
not a replacement for general data cubes, which are structures applicable to any data
set. Rather, it provides an efficient alternative when working with large time series
and OLAP queries that slice and dice the time series over the temporal resolutions.

13

Figure 2.2: Data cube with D = {hour,dayweek,month} has a total of 2|D| cuboids,
where each cuboid stores the aggregations for all possible values of its dimensions.

Time Series Visualization. Time stamped data has long been studied and
visualized in multiple domains. Several studies propose different metaphors and
interactions when dealing with time series, such as applying lenses [60], cluster-
ing values into calendar-based bins [61] or re-ordering of the series at different
aggregations to allow for an easier exploration [62]. The perception impact on
the visualization of multiple time series has been studied by Javed et al. [63]. A
full survey of different techniques was presented by Silva and Catarci [64], Müller
and Schumann [65] and Aigner et al. [66]. Note that all of these approaches are
orthogonal to this work. While their goal is to provide new visual metaphors,
ours is to support real-time execution of queries that are used to generate the
required visualizations. The visualization of time series in multiple resolutions has
also been a topic of study. Berry and Munzner [67] aggregate the data into bins
prior to the visualization. Hao et al. [68] proposed a distortion technique that
generates visualizations where more visual space is allocated to data according to a
measurement of interest. Jugel et al. [69] proposed M4, a technique to aggregate
and reduce time series considering screen space properties. All of these approaches,
however, do not focus on OLAP-type queries, limiting their techniques to essentially
a range query at a coarser resolution.

Another popular area of research associated with time series is the querying
of similar patterns in a time series [70, 71, 72]. Time Lattice can augment these
approaches by speeding up sub-queries that are commonly used by them.

14
2.2 Time Lattice

The primary goal of this work is to efficiently execute queries of the following
type over an input time series:

select time series between t1 and t2
where constraints C

groupby resolutions G

where, t1 and t2 specify the time period of the data to consider. The constraints
C = ⋃

r{Cr} define the constraints over each temporal resolution r. Here, Cr
specifies a set of values in resolution r that have to be satisfied. The resolutions
g ∈ G specify the resolutions on which to perform the group-by. For example, if
the query in Section 2 has to be executed only for data from the last 6 months
of 2017, we set t1 = 2017-06-01T00:00; t2 = 2017-11-30T:23:59; C =

{
Cdayweek =

{Monday, ...,F riday}
}

; and G= {hour}.
In this section, we describe the main data structure, Time Lattice, and discuss

its properties. We also explain the query execution strategy using Time Lattice
and describe extensions to the data structure that enable additional features such
as support for join queries and multiple aggregations.

2.2.1 Data Structure

A data cube [54] is a method that was designed to efficiently answer aggregate
queries such as the one shown above. Here, the resolutions of time are modeled as the
dimensions D of a data cube. However, unlike general data sets, the dimensions of
time corresponding to the different temporal resolutions are hierarchically dependent.
We make use of this property to design a data structure that is both memory
efficient and supports interactive aggregate queries. To avoid the exponential
memory overhead of a data cube, we compute only a subset of the data cube.
We then make use of the inter-dependency between the temporal resolutions to
efficiently compute on-the-fly query results. In this section, we first provide a brief
overview of data cubes followed by describing in detail the proposed data structure.
We use the terms resolution and dimensions interchangeably in the remainder of
the text.

15
Table 2.1: List of symbols.

T Discrete space representing time.
f : T → R Time series.

D Dimensions of the data cube. It cor-
responds to the temporal resolutions
in case of a time series.

P(D) Power set of D.
≺ Partial order defined on the temporal

resolutions.
H Hasse diagram of the poset (D,≺).
Br Cuboid corresponding to resolution

r.
αr(t) Association function mapping time

step t to an offset in Br.
πr→r′(i) Containment function mapping an

element in Br to an element in Br′ ,
where r→ r′ ∈H.

Preliminaries: Data Cubes. Consider a time series f : T →R, which maps each
time step of a discrete temporal space T to a real value. Without loss of generality,
let the resolution of T be seconds and be represented using epoch time (i.e., seconds
since January 1, 1970, Midnight UTC). Let f be defined for every second within a
time interval [t1, t2), t1, t2 ∈ T . For ease of exposition, assume that there are no
gaps in the time series, that is, the function f is defined for all t1 ≤ t < t2. Since we
are working with time, f can also be analyzed in resolutions coarser than a second,
such as minute, hour, day of week (dayweek), etc.

A data cube represents all possible aggregations over the dimensions in D.
Formally, a data cube represents the 2d cuboids corresponding to the elements
of the power set P(D), where d = |D|. For example, given dimensions D =
{hour,dayweek,month}:

P(D) =
{
∅,{hour},{dayweek},{month},{hour,dayweek},

{dayweek,month},{hour,month},

{hour,dayweek,month}
}

The set of cuboids for the data cube in the above example is shown in Figure 2.2.

16
The dimension of a cuboid BP , P ∈ P(D), is equal to |P |. For example, the
element {dayweek} forms a 1-dimensional cuboid while {hour,dayweek} forms a
2-dimensional cuboid. A k-dimensional cuboid (or k-cuboid) stores all possi-
ble aggregations corresponding to its k dimensions. For example, the 2-cuboid
{hour,dayweek,ALL}, corresponding to the element {hour,dayweek} ∈P(D), stores
the aggregations for all possible (hour, dayweek) values. Here, the aggregation
is performed over the other d−k dimensions represented by ALL, which in the
above example is month. Thus, this cuboid has size 24×7 (there are 24 possible
hours and 7 possible days). In general, the size of a k-cuboid, i.e., the number of
aggregations stored by the cuboid, is equal to the product of the cardinality of each
of its dimensions.

A fully materialized data cube pre-computes and stores all 2d cuboids corre-
sponding to P(D). As a rule of thumb, the number of dimensions to use to create
a cube depends on the resolution of the constraints used in the query. In the above
example, to support queries that group by or filter over arbitrary time ranges
specified in the resolution of minutes, the dimension minutes should be added to D.
When a new dimension is added, not only does the number of cuboids increases by
a factor of 2 (23 to 24 in the example), but the total number of aggregations stored
(corresponding to all the cuboids) increases by a factor equal to the number of
categories in that dimension (60 in case the dimension minute is added to D, since
there are 60 possible values denoting a minute). Clearly, the size of the data cube
increases exponentially with new dimensions, and can quickly become intractable
when working with resolutions commonly used in time series analyses.
The Time Lattice structure. Instead of materializing the entire data cube, we
use the intrinsic hierarchy present in time to materialize only a subset of this cube.
Formally, let D = {r1, r2, . . . , rd} denote the different temporal resolutions. Let
≺ denote a partial order defined on D, such that ri ≺ rj if the time stamps in
resolution ri can be partitioned based on the time stamps in resolution rj . For
example, minute ≺ hour and hour ≺ dayweek, since the time stamps specified in
minutes can be partitioned based on the hour of that time stamp, and similarly
hours can be partitioned by days. Note that the above partial order is different
from the partial order that defines the data cube itself (defined by the inclusion
function [54]). Let H denote the Hasse diagram of the partially ordered set, or poset,

17
(D,≺). The nodes of H correspond to the dimensions in D, and an edge exists from
ri to rj if rj covers ri, i.e., ri ≺ rj and @rk|ri ≺ rk ≺ rj . In the above example, even
though minute ≺ dayweek, this edge does not exist in H since dayweek does not
cover minute (∃hour s.t. minute≺ hour ≺ dayweek). Figure 2.3 shows the Hasse
diagram for the poset covering common temporal resolutions used in this work.

Figure 2.3: Hasse diagram denoting the poset
defined on the temporal resolutions used in
this work.

Time Lattice materializes cuboids
using H as follows. Consider a
maximal path (ri1 , ri2 , . . . , r, . . . , rin)
in H such that ri1 ≺ ri2 ≺
. . . ≺ r ≺ . . . ≺ rin . The cuboid
(ALL,ALL, . . . ,ALL,r, . . . , rin) is ma-
terialized corresponding to the node
r in this path. For example, con-
sider the node daymonth in the
poset defined in Figure 2.3. This results in materializing the cuboid
(ALL,ALL,ALL,daymonth,Month,Y ear). Next, consider a resolution r which
is not part of this path. A maximal path in H that includes r is next chosen
to be materialized. This process is repeated until there is at least one cuboid
corresponding all resolutions in H. The Time Lattice is the union of all the cuboids
resulting from the above materialization. Note that, since each cuboid BP that
is materialized corresponds to a resolution r ∈ H, we refer to this cuboid using
r as Br.

Such a materialization has several advantages:

• Each materialized cuboid Br can be represented by a contiguous array such that
the aggregate values stored in Br follow a chronological order representing a
continuous time series in resolution r. Thus, the Time Lattice can have a simple
array-based implementation.

• Consider the resolutions daymonth and dayweek. Even though they are conceptu-
ally different (the categories have different range: {1,2,3, . . .} vs. {Mon,Tue, . . .}),
the individual array elements of Bdaymonth and Bdayweek correspond to the same
days. Thus, the same array can be shared by both these cuboids.

• Because of the chronological ordering, the different cuboids can be implicitly
indexed based on the resolution r. This implicit index is formally defined using

18
Table 2.2: Association functions. Here y() and m() return the year and month
respectively for a given time stamp, and weeksbetween() returns then number of
weeks between two time stamps.

αsecond(t) Bsecond[t− t1]
αminute(t) Bminute[b t

60 −b
t1
60cc]

αhour(t) Bhour[b t
60∗60 −b

t1
60∗60cc]

αday(t) Bday[b t
24∗60∗60 −b

t1
24∗60∗60cc]

αweek(t) Bweek[weeksbetween(t, t1)]
αmonth(t) Bmonth[12∗ (y(t)−y(t1)) +m(t)−m(t1)]
αyear(t) Byear[y(t)−y(t1)]

an association function, αr(t), corresponding to each r ∈H, which maps a time
stamp t to an offset i of the array Br. That is, Br[i] stores the aggregated value
corresponding to time step t in the cuboid Br. Table 2.2 lists the association
functions αr used for the resolutions in Figure 2.3.

• Enables efficient updates to the data structure (see details below).

• The temporal hierarchy also allows for an implicit mapping between array ele-
ments across resolutions, enabling efficient “rollups” and “drilldown” operations
that are performed on a cube (see Section 2.2.2). This mapping is formally
defined by the containment function πr→r′ which maps an array offset i in
resolution r to an offset j in resolution r′, whenever there is an edge from r to
r′ in H. Essentially, πr→r′(i) = j if and only if there exists t such that αr(t) = i

and αr′(t) = j. This function can also be parametrically computed similar to the
association function. Since π is a many-one function, the inverse mapping π−1

r→r′

maps an offset in the coarser resolution r′ to a sub-array in Br. This mapping
to a sub-array is only possible because of the above mentioned ordering of Br.

• Helps efficiently execute queries with range constraints as well—only the sub-
array(s) within the offsets corresponding to the query range has to be considered.

The elements of the cuboid Br (i.e., Br[i]) store one or more measurements µr(i).
Here, µ can be any distributive and algebraic operation. In our implementation, we
store the following distributive aggregates—minimum, maximum, sum, and count.
This can in turn be used to compute other algebraic aggregates such as average
(see Section 2.2.3 for more details). Note that if the dimension is the same as the

19
resolution of the underlying time series, then µ simply corresponds to the time
series itself.
Space Requirements. Let the size of the time series be n. For analysis purposes,
first consider a maximal path r1, r2, . . . , rk in H s.t. r1 ≺ r2 ≺ . . . rk. Without loss of
generality, let r1 be the original resolution of the time series. Thus, the Br1 simply
corresponds to the underlying data itself. Let the space required for materializing
at resolution ri (size of the array Bri) be si. Therefore, s1 = n. Then, the space
required for materializing all arrays (i.e., not counting the base array, which is the
underlying time series) is s=∑k

i=2 si. The size si+1 is a fraction of si defined by
si+1 = dsi/ai+1e, where ai+1 = |π−1

ri→ri+1|. For example, aminute = 60 (60 seconds
make a minute), and aday = 24 (24 hours make a day). Therefore,

s =
k∑
i=2

si

= s1
a2

+ s2
a3

+ s3
a4

+ . . .+ sk−1
ak

≤ s1×
(

1
a2

+ 1
a2 ·a3

+ 1
a2 ·a3 ·a4

+ . . .+ 1∏k
i=2ad

)
+k

≤ s1 +k

≈ n
{

assuming k� n
}

Let the total number of maximal paths used to materialize the Time Lattice be m.
Then, the size of the Time Lattice data structure is bounded by O(m ·n). Given
that typically m is a very small integer—m= 2 for the Hasse diagram in Figure 2.3,
the size of the data structure is linear in the size of the underlying data. We
would like to note that this is not a tight bound. In fact, as we show later in the
experiments, the space required by the structure is significantly smaller in practice
(< 2% of n as shown in Section 2.4.2).
Updating the Data Structure. One of the main goals of our proposed data
structure is to support updates over new (or streaming) data. Consider an existing
Time Lattice structure, and an incoming value of the time series. Since this value
will have a time stamp t at the finest resolution (second for the purpose of this
work), it will simply be appended to Bsecond. For resolutions r|second≺ r, we first
need to check if the corresponding array element BR[αr(t)] already exists. If it

20
1: function DrillDown(B′,R,r,C,G,t1, t2)
2: result← []
3: B←B′∩BR[r][αr(t1),αr(t2)]
4: Cr← Constraints at resolution R[r]
5: if |G|= 0 and |C|= 0 then
6: result←B
7: else if |G|> 0 or |C|> 0 then
8: G=G\{R[r]}
9: C← C \Cr

10: for all b ∈B do
11: if b satisfies Cr
12: result←result ∪{

DrillDown(π−1
R[r+1]→R[r](b),R,r+ 1,C,G,t1, t2)

}
13: if r ∈G then
14: result← GroupBy(result,R[r])
15: return result
16: function Query(C,G,t1, t2)
17: r′← finest resolution in C ∪G
18: R[]←

{
path in H from r′ to year containing C ∪G

}
s.t. R[i+ 1]≺R[i]

19: DrillDown(Byear,R,0,C,G,t1, t2)

Figure 2.4: Pseudo-code for the aggregate query.

does, we need to update the value of the aggregation µr to take into account f(t).
If this element does not exist, it is first created and appended to Br and the value
of µr is appropriately initialized using f(t).

Assuming that the data structure is updated every second, the time complexity
becomes O(d) per update, where d is the number of arrays maintained and is
bounded by the number of resolutions in H. Oftentimes, it is not critical to have
such a high update frequency. For example, instead of updating the structure every
second, it would suffice in practice to update it every minute. Let this update
be performed every k seconds. In this case, there will be k appends to Bsecond,
d k
aminute

e updates / appends to Bminute, and so on. Thus, when k ≥ d (e.g., for a
minute-wise update, k = 60> d= 7) the time complexity is O(k+d) for effectively
k updates, or O(k+d

k) =O(1) amortized time per update.

2.2.2 Querying

Aggregate Query. Aggregate queries (or OLAP-type queries) are primarily used
for a more nuanced analysis on the time series data. The algorithm to execute such a

21

Figure 2.5: Drilldown performed (w.r.t. one of the months) when a query groups-by
month over all Saturdays from 18:30 to 23:59.

query is presented in Figure 2.4. The query is executed by first drilling down starting
from the 0-dimensional cuboid of the data cube. At each successive resolution r,
the constraint values for that particular resolution (Line 4) are evaluated. Given a
constraint in resolution r, the sub-arrays in Br satisfying these constraints (within
the given time range [t1, t2)) are first identified, and a drilldown is performed only
with respect to these sub-arrays (Lines 10–12). Intuitively, a drilldown corresponds
to expanding the cuboid by increasing its dimension by one. Figure 2.5 illustrates
this procedure on a query that requires a group-by on month over all Saturday nights
(18:30hrs–23:59hrs). For the hour 18, the execution drills down up to the minute
resolution, and for the other hours in the constraints, only upto the hour resolution.

The drilldown is recursively repeated until the constraint in C at the finest
resolution, rc, is satisfied. Let rg ∈G be the finest resolution on which a group-by
is performed. If rg ≺ rc, then a drilldown is further performed until rg. On the
other hand, if rc ≺ rg, a rollup is performed until rg. Intuitively, a rollup decreases
the dimensionality of a cuboid by one by aggregating over one of its dimensions. At
this stage, the group-by is performed recursively over all resolutions in G starting
from rg and rolling-up to coarser resolutions. At each resolution, the elements of
the filtered (and previously grouped-by) sub-array are aggregated into the query
result (Line 14).

22
Range Query. Time Lattice also supports range queries over time series data. A
range query is used to query for the time series within a given time interval at an
optional user specified resolution. This query is primarily intended for the visual
exploration of the time series. A resolution coarser than the original resolution of
the time series returns the computed aggregates. It is common for the visualization
system to control the resolution specified in the query depending on the available
screen space and the time constraint. For example, when visualizing a large time
series, the screen space restricts each pixel to cover a time interval larger than a
single unit of time. So, the system might choose to visualize the maximum value
within the time interval corresponding to each pixel in order to obtain a big picture
of the time series (analogous to the level of detail rendering used for terrains, which
shows only larger mountains when the camera is distant, and increases detail as
the camera moves closer to the scene).

The result for a query having time constraint [t1, t2] and resolution r is simply
the sub-array of Br from αr(t1) to αr(t2).

2.2.3 Extensions

Handling Discontinuous Time Series. We have so far assumed that the given
time series is continuous and without gaps. This, however, need not be true
in practice. For example, a sound sensor could malfunction, and hence stop
transmitting data. This would result in no data from the sensor until it is corrected.
Such a situation can be handled in two ways. One could simply “fill” the gaps
with a default value denoting lack of data. In this case, when aggregations are
performed at a coarser resolution, these values should be dealt with appropriately.
The other option is to maintain separate Time Lattices for each contiguous time
series. In this case, the querying approach would be modified to perform queries
over all Time Lattices whose time interval intersects the query time range, and
combine the multiple results into a single result.

In our current implementation, we chose the former since the time interval
between failure and replacement of sensors is typically small, resulting in a small
memory overhead due to the “filling” operation. However, for cases where this gap
can be significant, we advise the use of multiple Time Lattices.

23
Supporting Multiple Aggregations. Time Lattice supports the use of any
aggregable measure. Here, a measure is said to be aggregable if its sufficient statistics
can be expressed as a function of commutative and associative operators [73]. Thus,
it allows an aggregation at a coarser resolution to be computed purely using the
immediate finer resolution (and hence not using the raw data at all). In addition,
measures such as median or percentiles can also be approximated by maintaining a
histogram associated with each bin. The size of this histogram can be adjusted
depending on the available memory and accuracy requirements.

The low memory requirement of Time Lattice further allows the addition of
more advance summaries, as long as they are aggregable. For instance, each bin can
have a tdigest [74] associated with it, so that holistic measurements such as quantiles
can also be computed within an error threshold. As shown later in Section 2.5, it
is also easy to add domain specific measures to the data structure.

Figure 2.6: An additional histogram corre-
sponding to a second time series is stored
in the cuboids to support joins in queries.

Supporting Joins. Oftentimes, the
analysis of a time series might require
a join with another time series. For ex-
ample, when analyzing the decibel level
time series from a sound sensor, the
domain expert might want to consider
only time periods when there was signifi-
cant rainfall (precipitation greater than
a given threshold). Here the rainfall
data would be represented by a second
time series, say f ′. To support such a
join, we additionally store a histogram
corresponding to f ′ in each element of
a cuboid as follows. The bins of this
histogram correspond to the range of f ′. Consider one such histogram bin hav-
ing range [f ′1,f ′2). The value stored in this bin is equal to the aggregate of f(t)
where t|f ′1 ≤ f ′(t)≤ f ′2. Figure 2.6 illustrates once such histogram for the above
rainfall example.

Note that the resolution of f ′ does not need to be the same as that of the
time series of interest f . If the resolution of f ′ is finer than that of f , then f ′ is

24
appropriately aggregated. If instead, it is coarser, then f ′ can be extrapolated to
support constraints in a finer resolution. In our current implementation, we assume
that the join condition based on f ′ is not coarser than the group-by resolution of
the query. The case when the condition is coarser than the group-by resolution
can be supported by storing the aggregate measure corresponding to f ′ as well in
the Time Lattice, and drilldown performed only when an array element satisfies
the condition.

Figure 2.7: Expanded materialization
between the resolutions hour and day.
Recall that the array corresponding to
day is shared for the resolutions dayweek
and daymonth.

Extended Materialization. Depend-
ing on the size of the underlying time
series, queries could still be expensive
depending on the query constraints.
In such cases, selectively materializing
more nodes can greatly help speed up
the query execution. If frequently posed
queries involve a group-by different from
the ones materialized, then that corre-
sponding cuboid is materialized.

On the other hand, if frequently
posed queries involve similar constraints along a single resolution, then it might be
more beneficial to add a new dimension, and materialize that resolution accordingly.
For example, users might frequently pose queries with constraints in hour of day
to study patterns during different times of the day such as during peak hours in
the morning and / or evening. One such query would be to obtain the aggregated
behavior during peak morning hours (say 8 a.m. to 11 a.m.) grouped by the days
of the week. To execute the queries, several sub-arrays are processed after filtering
Bhour. As the size of the time series keeps increasing, this overhead could become
significant. In such cases, a new coarser resolution can be introduced.

For a resolution r, there can be ar−2 possible resolutions that can be added
corresponding to the possible time ranges. In the above example, this resolution
would lie between hour and day with respect to the partial order ≺. There are
aday−2 = 22 such possible resolutions ranging from 2 hours to 23 hours. If all of
these resolutions are materialized, then it increases the size of the Time Lattice by
a linear number of cuboids.

25
Materializing all such nodes for all resolutions might not be necessary for the

required analysis. Instead, we allow users to specify common queries, and choose
the new resolutions to be materialized. By default, one could materialize resolutions
corresponding to time intervals that are factors of ar. Figure 2.7 shows one such
materialization between the hour and day resolutions, where the time intervals
of sizes 2, 3, 4, 6, 8, and 12 hours are materialized. Queries with constraints
having a different interval size are then computed by using a combination of
these resolutions.

2.3 Noise Profiler

Working with researchers from the SONYC project, we developed a prototype
web-based visualization tool, Noise Profiler, that uses Time Lattice to help in the
visual analysis of the SPL data obtained from the different sensors deployed in
NYC. In this section, we first describe the SPL data followed by discussing the
design of the Noise Profiler interface. We finally describe how Time Lattice was
used to support the different features of Noise Profiler.

2.3.1 Sound Measurement Data

For the remainder of this chapter, we use sound pressure level decibel (SPL dBA)
data obtained from the different acoustic sensors. Here, the A denotes a frequency
weighting that approximates the response of the human auditory system. This
data is sampled continuously at 1 second intervals from each sensor. As mentioned
in Section 2, the sensor network used for this work consists of 48 deployed nodes
spread across NYC. Thus, each sensor generates a time series having approximately
31.5 million points per year. As part of the analysis, the researchers are also
interested in computing a metric called equivalent continuous A-weighted sound
pressure level (LAeq). LAeq is the sound pressure level in decibels equivalent to
the total A-weighted sound energy measured over a given time period. This metric
is used when exploring / analyzing acoustic data over coarser time resolutions.

26
2.3.2 Desiderata

The two main tasks that the researchers in the SONYC project are interested in
are: 1) specify, execute, and visualize OLAP analytical queries over the SPL data
from across the city; and 2) compare live data with the summaries obtained from
these queries. To accomplish this, we develop a web-based prototype system built
on top of Time Lattice to satisfy the following requirements: 1) visually specify
queries— this includes the ability to select the time period of the data to analyze,
apply constraints over different time resolutions, and specify dimensions on which
to perform group-by’s; 2) ability to select and compare data from one or more
sensors based on the location; 3) support for the LAeq metric as the aggregate in
the queries; and 4) visualize live data together with the results of the queries We
now briefly detail the interface followed by describing the backend query processing
that is handled separately by a server.

2.3.3 Visual Interface

The Noise Profiler interface consists of two main components—a query panel
and a time series widget (see Figure 2.1).
Query Panel. The query panel (Figure 2.1 (right)) allows the user to visually frame
the different analysis queries, and choose the measure of interest to be visualized.
While framing a query, the user can set constraints at various resolutions (e.g.,
analysis over weekends would require a constraint on the dayweek resolution, and
night time would require a constraint on the hour of day resolution). Users can also
specify the group-by dimension. The time range of interest for a query is specified
by brushing on the summary view from the time series widget (described next).
The query panel also has a map widget (Figure 2.1 (left)) that displays the location
of the deployed acoustic sensors from which the user can choose the sensors of
interest. In addition, the user can also choose between analysis mode and streaming
mode. The analysis mode is primarily used for analysis of historical data, while
the latter allows users to visualize streaming data together with analysis queries.
Time Series Widget. The user can create one or more time series widgets, called
time series cards. Each card is composed of a summary view providing an overview
of the entire time series, and a detailed view, visualizing the result from a query.

27
Users can select the time range of interest by brushing over the summary view.
When no constraints / group-by’s are specified, the query simply corresponds to a
range query, and is visualized in the detailed view. We support the level-of-detail
rendering by default (see Section 2.2.2). The resolution at which it is visualized is
determined by the screen space (number of horizontal pixels) available. Thus, by
zooming in (selecting a smaller time range) the users can see more details of the
time series. When group-by’s are present, the result of this query over the selected
time range is visualized in the detailed view.

Users can select several sensors to be visualized on a single card, and the chosen
query is executed on all time series corresponding to these sensors. The color of a
time series indicates the sensor source on the map. When there are multiple time
series cards, queries are specified separately for each of them, thus allowing the
user to use multiple cards for comparing different scenarios (e.g., day time vs night
time, or different clusters of sensors).

When working in streaming mode, the live data from the selected sensors is
shown together with the plots resulting from the specified query. Here, the live
data is visualized using a lighter hue of the sensor color (see Figure 2.1).

2.3.4 Query Backend

We implement a server-based backend so as to allow users easy access to the
Noise Profiler through a web browser. For each deployed sensor, we maintain one
Time Lattice data structure. Given a query and collection of sensors (that are
selected by the user), the query is executed once for each of the sensors. Due to
the low latency of the Time Lattice data structure, it is possible to perform such
analysis interactively. Note that this would not have been possible using existing
techniques given their performance. The information about each of the sensor
(e.g., location, deployed time) is stored separately, together with a reference to the
Time Lattice corresponding to it. Missing and / or invalid data (e.g., when a sensor
goes down) is filled with a default value.

When creating the data structure, in addition to the default minimum, maximum,
sum, and average measures, we also store information to compute the LAeq metric
that was required for the analysis tasks. We maintain one background thread per
sensor which listens for new data and updates the Time Lattice accordingly.

28
2.4 Experimental Evaluation

In this section, we discuss results from our experiments evaluating the efficiency
of the Time Lattice data structure.

2.4.1 Experimental Setup

Hardware Configuration. All experiments were performed on a workstation
with a Intel Xeon E5-2650 CPU clocked at 2.00 GHz and 64 GB RAM.
Data Sets. We generate synthetic time series data sets for our evaluation. The
time series is itself at the second resolution, and for each second, a random number
from a uniform distribution is used as the value for each time step (second). We
generate time series of different sizes depending on the experiment that is performed.

Table 2.3: Queries used in the experiments.

Q1 select time series between December 14,
1970 5:20 and February 3, 1972 9:20 aggre-
gated by hour

Q2 select time series group by hour
Q3 select time series where time between 09:30

and 17:30 group by day
Q4 select time series where time between 09:30

and 17:30, month in [January, February,
March] group by hour, minute

Queries. The four queries used in our evaluation are shown in Table 2.3. We chose
these queries to cover the different scenarios that arise during the visual analysis
of time series data. Query Q1 is a range query typically used in the exploration
of time series, and queries for data within the given range to be visualized as an
hourly time series. Q2 is a group-by query used to visualize the hourly patterns
in the data. Q3 queries for the day time patterns in the data for every day of the
week. The complexity of the group-by query in this case is increased by adding a
constraint on time (i.e., day time range). The above two queries are typically used
to study ambient noise patterns (see Section 2.5.1). Finally, Q4 further increases
the complexity of Q2 and Q3 by adding an additional constraint, as well as another
group-by dimension. This query provides detailed minute-wise day time patterns
over winter months.

29
State-of-the-art Approaches. For a comparison of Time Lattice with the state
of the art in Section 2.4.3, we use a combination of both data cube-based techniques
as well as libraries and databases that are catered for time series data analysis.

In particular, for the data cube-based baseline, we use nanocubes [47] which is
also available as open-source software. We did not choose hashedcubes [48] since
the available implementation supports only “count” queries and cannot perform
aggregation over attributes. Also, nanocubes has better query performance than
hashedcubes [48], and hence provides a better baseline. To be fair, we only chose
resolutions that are used by the test queries as dimensions while constructing the
nanocubes data structure. This also allows the data structure to be more memory
efficient. The resolutions included were: year, month, dayweek, hour, and minute,
and hour-minute. The last category gives the minute of the day having a value
between 0 and 1440. This was required to efficiently support queries Q3 and Q4
that have constraints on the time of day.

With respect to time series databases, we chose those that support OLAP queries:
PostgreSQL with the timescale [52] extension, InfluxDB [45] and KairosDB [46].
We created a hypertable and an index on the time dimension when using the
timescale extension in PostgreSQL. For both InfluxDB and KairosDB, we created
tag columns corresponding to the time dimensions used for querying (same as the
ones used for nanocubes). In addition to the above, we also compare our data
structure with the in-memory python library Pandas [75] that is commonly used
by data scientists in the analysis of time series data. To enable efficient querying,
we created a DataFrame with an index on the time dimension.
Software Configuration. The Time Lattice data structure was implemented
using C++. For all the experiments, the Hasse diagram in Figure 2.3 was used to
create the Time Lattice on the input data. Queries were executed 5 times, and the
median timings are reported.

2.4.2 Scalability

We first study the scalability of Time Lattice with increasing data sizes with
respect to both query evaluation time as well as data structure update time.
Data Structure Size. Figure 2.8 shows the size of the Time Lattice data structure
for different time series sizes. Note that the size of the structure includes that of

30

Figure 2.8: Size of Time Lattice within increasing time series size. Note that the
additional memory overhead used for the data structure is considerably smaller
than the data itself (< 2%).

Figure 2.9: Query execution time for the four test queries as the size of the
data increases.

the raw data, and the upper bound of additional memory overhead for the data
structure is linear in the size of the data itself (see Section 2.2.1). In practice, as
illustrated in the figure, this memory overhead is just a small fraction (≈ 1.6%) of
the underlying raw data.
Query Evaluation. Figure 2.9 shows the query evaluation time for the 4 test
queries with increasing data sizes. Note that, except for Q1, the rest of queries
cover the entire time series. As expected, one can see a linear scaling with data
size. This is primarily due to the data structure size and query time trade-off in
the design on Time Lattice. Since there is no cuboid materialized with respect
to the group-by dimensions used in the queries, the query execution drills down
to the finest resolution required, and the processing time is linear in the size of
this dimension.

Q4, in particular, is an example of a pathological case query for our data
structure due to the following reasons: 1) the time range selected does not align
with the dimensions used thus requiring a drill down to a finer resolution during

31

Figure 2.10: Average time per update. Note that the update time remains consistent
(≈ 0.012 ms) even when adding new data to a Time Lattice built on a time series
of size close to a billion points.

query evaluation (as a rule of thumb, query evaluation requiring only coarser
resolutions are faster than those requiring finer resolutions); and 2) the group-by
is on two dimensions–the corresponding cuboid is not precomputed. Thus, this
aggregation has to be evaluated on the fly. Note that even for such complex
group-by with multiple constraints over an entire time series having as large as one
billion time steps, the queries take less than 650 ms.
Performance of Updates. Figure 2.10 shows the time to update the data
structure with streaming data. For this experiment, we start with an empty
Time Lattice, and insert data one time step at a time. The plot shows the average
insertion time for an update with incoming data, and thus increasing data structure
size as well. As can be seen from the figure, the time to update the data structure
with new data is roughly constant, and around 0.012 ms. This ensures that even
if new data arrives at a frequency of every millisecond, our data structure will be
updated without any lag.

Table 2.4: Comparing query response times of Time Lattice with existing approaches
on a time series with 100M points.

Size Q1 Q2 Q3 Q4
(MB) Increase Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup

Time Lattice 397 — 40.5 — 15.0 — 12.8 — 92.4 —
Nanocube 41799 105X 116.0 2.9X 4.6 0.3X 2491.8 194X 40083.9 433X

Pandas 1600 4X 1670.1 41.2X 9355.1 623.6X 10399.3 812X 11070.6 119X
InfluxDB 412 1.03X 10574.6 261X 42913.5 2860X 35259.5 2754X 29058.0 314X

TimescaleDB 7867 19X 20385.1 503X 60206.4 4013X 130594.5 10202X 101036.1 1093X
KairosDB 1301 3X 229110.9 5657X 629886.4 41992X 240168.2 18763X 75267.1 814X

32
2.4.3 Comparison with State of the Art

Table 2.4 compares the performance of Time Lattice with the current state-
of-the-art solutions. A time series of size 100 million seconds was used for this
experiment. For all the approaches, except for Time Lattice, we had to add
additional columns to the data corresponding to the resolutions before loading it.
Time Lattice has the lowest space requirement, while nanocubes consumes the most
memory. InfluxDB, which compresses the data comes a close second.

The table also shows the query execution times for the four test queries. The
performance of Pandas and the three databases is significantly slower than that
of Time Lattice. While nanocubes has good performance for Q1, it has the best
performance for Q2. This is because Q2 is a straightforward group-by without any
constraint or filtering on time. Since nanocubes is essentially a memory optimized
data cube, this query is simply a lookup from the corresponding bin. On the other
hand, when more complex constraints are imposed, the performance significantly
degrades. To improve performance of nanocubes for the constraints involving time
of day, one could additionally add a dimension to the data corresponding to it.
However, when we tried to create the nanocubes structure with this additional
dimension, it ran out of the available 64 GB memory.

2.5 Case Studies

In this section, we illustrate how Noise Profiler can be used in the visual analysis
of multiple large time series data with a focus on understanding the acoustic noise
patterns in NYC. In particular, we discuss three case studies performed by the
researchers in the SONYC project.

2.5.1 Exploring Noise Patterns via Grouping

To better understand the acoustic conditions of the urban environment, long-
term monitoring is required to capture the variations in SPL over different periods:
minutes, hours, days, weeks, months and seasons. For example, noise enforcement
agencies in cities typically assess a breach of the noise code by a given rise in SPL
above the ambient background SPL. In cites, this ambient background SPL varies
at many different temporal resolutions, thus it is important to understand these
trends in order to better enforce local noise codes.

33

Sensors location

Back street Main street

Back street

Main street

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

76.0

74.0

72.0

70.0

68.0

66.0

64.0

62.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

76.0

74.0

72.0

70.0

68.0

66.0

64.0

62.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 2.11: Comparing daily patterns of noise on back streets with noise on
main streets.

Case Study 1: Location-wise Noise Patterns. In this case study, we were
interested in exploring the data for global trends, in particular how the noise
pattern changes throughout the course of a single day at different sensor locations.
This question essentially corresponds to the following group-by query on the
different sensors.

select time series between t1 and t2 groupby hour

Here, [t1, t2) corresponding to the time period of interest. To do this, we first
select sensors of interest into the same time series card and configure the above
query in the query panel.

Figure 2.11 shows the results from 2 sensors on main traffic thoroughfares and
2 on quieter back streets. It thus required executing 4 group-by queries, each
of which took 100 ms to execute. The morning rush-hour ramp up in dBA level
begins at the same time for each group of sensor locations, however, the main-street
locations maintain a raised dBA level until around 7 p.m., when the evening rush
hour begins to trail off. The reduction in dBA level after 1 p.m. for the back street
sensors could suggest that these streets are typically less used for evening rush hour
travel. The difference in dBA level between the early morning (12 a.m.–5 a.m.)
and peak daytime dBA levels from 8 a.m.–7 p.m. is far more pronounced at ≈7dB
for the main-street locations compared to ≈2dB for the back-street locations. This
highlights the impact of traffic noise on the main-street locations, when compared
with back-street locations.

34

Sensor Faults

Weekday Weekend 4:00 AM 8:00 AM
74.0

72.0

70.0

68.0

66.0

64.0

62.0

60.0

58.0

74.0

72.0

70.0

68.0

66.0

64.0

62.0

60.0

58.0

74.0

72.0

70.0

68.0

66.0

64.0

62.0

60.0

58.0

74.0

72.0

70.0

68.0

66.0

64.0

62.0

60.0

58.0
Sensor Faults

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230
Sensor Faults

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230 Tue Wed Thu Fri Sat SunMon
Sensor Faults

2018
2018/Feb

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

2018
2018/Feb

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

2018
2018/Feb

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

2018
2018/Feb

2017
2017/Feb

2017/Mar

2017/Apr

2017/May

2017/Jun

2017/Jul

2017/Aug

2017/Sep

2017/Oct

2017/Nov

2017/Dec

Tue Wed Thu Fri Sat SunMon

Figure 2.12: The two plots on the left show noise patterns on weekdays vs. weekends
on diverse locations around Washington Square Park and Central Park. The two
plots on the right show the weekly noise patterns for 4 a.m. and 8 a.m.

Case Study 2: Weekday vs Weekend Patterns. On weekends the daily dBA
levels throughout the day would intuitively exhibit a different trend to those on
weekdays. Knowing these differences allow city agencies to better understand the
evolution of ambient background levels at different periods of the day and week.
Figure 2.12 shows separately the weekday and weekend daily dBA level evolutions,
aggregated by hour for 5 sensors across varying locations. This shows an ≈1dB
difference between weekday and weekend peak dBA levels, highlighting the raised
weekday levels. Of note is the increased gradient on the ramp-up period from early
morning to peak rush hour on the weekday plot compared to that of the weekend
plot. That is, during weekdays, the noise levels increase sharply between 4 a.m.
and 7 a.m. On the other hand, during the weekend, the noise levels start increasing
later, at 5 a.m., and take until 2 p.m. to reach peak levels. A key point that is
apparent from these plots is the ≈ 1 hour later shift in this ramp up at weekends
suggesting that noise making activities begin later and take longer to increase
over time.

By visualizing these hourly noise patterns, the above analysis provides the
hours of interest to investigate more closely. In particular, while the ramp-up
patterns are clear, it is still not straightforward to make out how these hours vary
over the different days of the week. This can be visualized using the following
query template:

select time series between t1 and t2 where hour=4am
groupby dayweek

Figure 2.12 also shows the weekly noise patterns at 4 a.m. and 8 a.m. respectively,
allowing us to explore a different perspective of this data. Note how the noise level

35

90.0

85.0

80.0

75.0

70.0

65.0

60.0

55.0

Figure 2.13: Comparing live data with two different ambient noise baselines for a
given sensor.

at 8 a.m. is relatively constant on weekdays, but is lower on Sundays as compared
to Saturdays. On the other hand, it remains consistent throughout the week at
4 a.m. Each of the queries posed to obtain the above visualizations took on average
80 ms per sensor.

These findings can provide valuable information to city agencies looking to
understand the temporal characteristics of dBA levels at different days of the week.
For example, construction permits are generally not issued for work over weekends
to reduce the impact on city inhabitants. However, special out–of–hours permits
can be requested for weekend work. With knowledge on the temporal evolution of
dBA levels on weekends for a particular location, these permits can be time limited
to periods of high ambient dBA levels, reducing the impact of construction noise
on local residents.

Finally, an unexpected outcome of the visual analysis process described above
was the identification of erroneous sensor data due to sensor faults as seen in the
excessive and continuous raised dBA levels that can be seen in the summary view
in Figure 2.12. The visual interface allowed us to quickly and easily exclude this
erroneous data from the analysis. This kind of sensor data anomaly identification
is crucial when maintaining a sensor network of this scale.

36
Case Study 3: Ambient Noise Baselines. In NYC, the indication of a noise
code violation is given when a noise source exceeds the ambient dBA level by 10dB.
This prompts city agency inspectors to investigate further into the offending noise
source to determine the extent of its breach of the noise code. This ambient level
measurement is typically carried out using an instantaneous “eye–ball” measurement
using a sound level meter while the offending noise source is not operating. Agency
inspectors can also request that these noise sources be switched off to gain a
more representative ambient measurement. The issues here are: (1) that this
instantaneous ambient measurement may not be that representative of the area, as
experienced by its inhabitants / noise complainants over extended periods of time
on that day of the week, and (2) that a passive acoustic monitoring network does
not have the ability to request the temporary shutdown of noise sources.

Given (1), it is important to consider an ambient background level computed
over a more representative period of time, in order to decrease the impact of short
lived noise sources and day of week influences. This is naturally captured by a
group-by query. Figure 2.13 shows such a case, with the ambient level computed
as the hourly average over the last 11 months, considering only weekdays. Note
that the result of this query gets continuously updated with new incoming data.
Prior to using the Noise Profiler interface with the Time Lattice data structure,
we computed the ambient noise as the 90th percentile over a much shorter and
“temporally naive” period of 2 hours, as in, it does not consider the holistic ambient
level of this location, during the same period of time over multiple past instances
of this period. This is illustrated using a dashed line in Figure 2.13. Note that
that the ambient noise computed using this approach follows the same trend
as the actual instantaneous dB level, resulting in a less representative ambient
background level measurement. Thus, the use of select historical data for ambient
level calculation, therefore addresses issue (2), providing a representative ambient
background level measure for effective real–world noise code enforcement. Using
Time Lattice, computing both the group-by queries as well as the 90th percentile
measure took only 150ms even as the the data structure is simultaneously updated
with incoming data.

Figure 2.1 presents another example showing the weekday hourly noise patterns
of two different sensors. One sensor (blue) is located close to a main road (Broad-

37
way Av.), and presents a relatively constant dBA level throughout the hours of
the day. The other sensor (orange) is close to a major construction site, with a
higher dBA level during regular construction hours of 7 a.m. to 5 p.m. Also notice
a temporary dip in the live noise level around lunch time.

As this use case demonstrates, the combination of OLAP queries over long
time-periods and live streaming data can be used to better guide city agents when
issuing noise code violations (e.g., construction sites operating outside of their
allotted construction hours), as well as to better understand the noise profile of
certain regions.

2.5.2 Feedback

As researchers using the Noise Profiler, we found several advantages in using
the proposed system. The primary among them was the ability to seamlessly deal
with high resolution SPL data covering large time periods. The high temporal
resolution of the acoustic data streamed from our noise sensor network results in
vast amounts of data. The frequently short-lived nature of urban noise events
mean that all of this data needs to be considered when determining the effects of
this noise on city inhabitants. We were typically limited to interacting with small
subsets of the data, especially when dealing with a duration of more than a few
days due to the limitations of our current tools (e.g., Pandas). The addition of
the ability to interactively explore historical data simultaneously from multiple
sensors helps tremendously, as now we can make more informed decisions based
on the acoustic conditions at multiple locations As shown in the last case study,
OLAP queries also allow the computation of a more meaningful baseline for ambient
noise level measurements, a clear improvement over our previous “temporally naive”
baseline. This in particular would be of great benefit to city agencies tasked with
urban noise enforcement to better understand sources noise levels with respect to a
representative ambient baseline. In addition to this, the Noise Profiler would allow
a noise enforcement officer to query the periods at the very start and end of the
allowed construction times of 7 a.m. and 6 p.m. Construction sites that begin early
or end late can be scheduled a visit, optimizing agency resource allocation to the
places that matter.

38
We also recently demonstrated the Noise Profiler prototype to experts from

NYC’s Department of Environmental Protection (DEP). While they were impressed
with the analysis capabilities, especially the responsiveness in querying and han-
dling data from multiple sensors, they found the general query interface a little
overwhelming. In particular, they want to simplify the query interface by making it
more focused on the typical queries that they repeatedly perform. We are currently
in the process of making our system live for them to use.

2.6 Discussion

In this chapter we presented Time Lattice, a memory efficient data structure
to efficiently handle complex OLAP queries over time series data. By selectively
materializing a subset of the data cube based on the intrinsic hierarchy of the time
resolutions, it allows for a linear memory overhead and also supports constant
amortized time updates to the data structure. We also developed Noise Profiler, a
web-based visualization framework that uses Time Lattice to allow the interactive
analysis of data captured from acoustic sensors deployed around New York City.

While our current implementation can easily handle time series having a billion
points interactively, as the data size keeps increasing, interactivity might not always
be possible. However, many steps in the query execution process can be parallelized.
In future, we intend to explore both CPU as well as GPU-based parallelization
strategies, which can enable sub-second response times even with time series having
several billions of points.

39

Chapter 3

Spatiotemporal Data: Real-Time
Ranking of Geotagged Keywords

Ranks and lists play a major role in human society. It is natural for us to
rank everything, from movies to appliances to sports teams to countries’ GDPs. It
helps us understand a world that is increasingly more complex by only focusing
on a subset of objects. There is probably no better way to describe a decade
than by ranking its most popular songs or movies. One just needs to look at the
Billboard Hot 100 of any year to gain insight into how the majority of society used
to think and behave. High Fidelity [76] describes a person obsessed with compiling
top-five lists for every occasion; as summarized in the book, the act of ranking
gives structure to life, by clarifying the past [77].

With the ever-increasing amount of user-generated content found online, ranks
have never been so popular to our cultural landscape. “What’s trending” has
become a commonplace phrase used to capture the spirit of a time by looking at
the most popular Twitter hashtags. The same way that the most popular songs
can be used to describe the zeitgeist of a year or a decade, what’s trending can be
used to describe the spirit of a day or even an hour.

In addition to the deluge of new user-generated data, the ubiquity of GPS-
enabled devices provides further insight into the people creating this content by
providing, in many cases, their location when posting a message to Facebook,
uploading a picture to Flickr, checking into Foursquare at their favorite restaurant,
or posting a review about a new product they just bought. The location information

40
provides a much more interesting, and more complicated, version of the ranking
problem. Now, not only are we interested in what is trending over time, but also
over space, which can range from the entire world all the way down to a city street.
What might be trending in one neighborhood of a city, may be completely different
from other neighborhoods in other cities, and these may be completely different
from the overall global trend across the country. Thus, the ability to explore these
ranks at different spatial and temporal resolutions is important for understanding
our world and the people in it.

A system that can efficiently process large amounts of data and come up with
answers in a few minutes or seconds can be applied to many important problems,
including those described here. In recent years, though, with the explosion of
data gathering capabilities, there is a growing demand for interactive tools with
sub-second latencies. Problems for which no automatic procedure exists that can
replace human investigation of multiple (visual) data patterns require exploratory
tools that are driven by a low latency query solving engine. Making an analyst
wait too long for the query answer might mean breaking her flow of thought, and
be the difference between capturing an idea or not.

We have recently seen a growth in research revisiting previous techniques and
proposing new variations for solving exactly the problem of low latency queries
for the purposes of driving visual interactive interfaces. From the perspective of
enabling fast scanning of the data at query time, works like MapD [78] and imMens
[79] use the parallel processing power of GPUs to answer queries at rates compatible
with interactive interfaces. From a complementary perspective, Nanocubes [47]
describes how to pre-aggregate data in an efficient but memory intensive fashion to
allow for light-weight processing of queries in real-time.

In this chapter, we also follow this path of describing techniques for low-latency
querying of large data for exploratory visualization purposes. We propose an
extension to the efficient pre-aggregation scheme described in Nanocubes [47] to
cover an important use case that was not discussed: interactively ranking top
objects from a large data collection incident to an arbitrary multi-dimensional
selection. For example, we would like to answer queries such as: “What are the
top Flickr tags?” for manually selected spatial regions such as Europe, California,
Chicago, or Times Square. Furthermore, we want to be able to determine how the

41
popularity of these tags evolves over time, as dictated by the end-user’s interests,
all at interactive rates.

We show that the state of the art is not able to compute such queries fast
enough to allow for interactive exploration. TopKube however, is a rank-aware data
structure that is able to compute top-k queries with sufficiently low latency to allow
for interactive exploration. Through a set of benchmarks which we make available
publicly, we show that our proposal is up to an order of magnitude faster than the
previous state of the art. More specifically, we can summarize our contributions as
the following:

• A rank-aware data structure that allows for interactive visual exploration of
top-k queries, with results up to one order of magnitude faster than previous
work.

• A set of case studies that demonstrate the utility of our method using real-world,
publicly available datasets, ranging in size up to hundreds of millions of records.

• A new set of publicly available benchmarks for others to validate their methods
and compare to our own.

3.1 Related Work

The challenge of visualizing large datasets has been extensively studied over
the years. Most techniques usually propose some form of data reduction: they
try to aggregate a large number of points into as few points as possible, and
then visualize that smaller aggregation. The original dataset is reduced to a
smaller, sometimes bounded, version. Such reductions try to convey most, if
not all, of the properties of the original dataset while still being suitable for
interactive visualization. Perceptually approximate techniques [80, 81], which utilize
data reduction, maintain interactivity while returning visual approximations that
approach the exact results. Sampling [82], filtering [83] and binned aggregation [84]
are among the most popular reduction techniques. Even though sampling and
filtering reduce the number of items, it comes at the price of missing certain aspects
of the data, including outliers. As pointed out by Rousseeuw and Leroy [85], data
outliers are an important aspect of any data analysis tool. Binned aggregation,

42
however, does not have such limitations. The spatial domain is divided into bins,
and each data point is placed into one of those bins. As such, binning does not
remove outliers and also preserves the underlying density behavior of the data.

The visual exploration of large datasets, however, adds another layer of complex-
ity to the visualization problem. Now, one needs to query the dataset based on a
set of user inputs, and provide a visual response as quickly as possible, in order not
to impact the outcome of the visual exploration. In Liu and Heer [30], the authors
present general evidence for the importance of low latency visualizations, citing
that even a half second delay in response time can significantly impact observation,
generalization, and hypothesis rates. Systems such as imMens [79], Nanocubes [47],
and DICE [86] leveraged a data cube to reduce the latency between user input and
visualization response. Data cubes have been explored in the database community
for a long time [54], but in the visualization community, they were first introduced
in 2002 by Stolte et al. [87, 88]. All of these techniques, however, are limited to
simple data types, such as counts. They were designed to answer queries such as:

“How many pictures were uploaded from Paris during New Year’s Eve?” or “How
many GitHub commits happened on the West Coast?”. Our data structure goes
beyond that. We aim to answer more detailed queries, such as “What were the
most popular image tags for all the pictures uploaded from Paris?” or “What are
the GitHub projects with most commits in the West Coast?”.

The notions of ranking and top-k queries were also first introduced by the
database community. Chen et al. [89] present a survey of the state of the art in
spatial keyword querying. The schemes can be classified as spatial-first, text-first
or a combination. Spatial-first structures create hierarchical spatial structures (e.g.,
grids [90], or R-trees [91]), and insert textual data into the leaf nodes. Text-first
structures organize the data by considering the textual elements, and then linking
a spatial data structure to it, keeping track of its occurrence in the space [90, 92].
Combined structures create data structures that handle both spatial and textual
elements simultaneously [93]. The previous data structures, however, focus on
building indexing schemes suitable for queries where the universe of keywords is
restricted. In other words, given a set of keywords, rank them according to their
popularity in a region. If there is no keyword restriction or the number of restricted
keywords is too large, then such proposals become unfeasible. Our proposal is much

43
broader: we are able to compute the rank of most popular keywords even if there
is no keyword restriction.

Rank-aware data cubes were also proposed in the database community. Xin et
al. [94] defined the ranking cube, a rank-aware data cube for the computation of
top-k queries. Wu et al. [95] introduced the ARCube, also a rank-aware data cube,
but one that supports partial materialization. Our proposal differs from them in
two major ways: we specialize our data structure to better suit spatiotemporal
datasets, and we demonstrate how our structure provides low latency, real-time
visual exploration of large datasets.

Another related database research area is top-k query processing: given a set
of lists, where each element is a tuple with key and value, compute the top-k
aggregated values. Several memory access scenarios led to the creation of a number
of algorithms [96]. The NRA (no random access) algorithm [97] considers that all
lists are sorted and that the only possible memory access method is through sorted
access (i.e., read from the top of each list). The TA (threshold algorithm) [97]
considers random access to calculate the top-k. More recently, Shmueli-Scheuer [98]
presented a budget-aware query processing algorithm that assumed the number of
memory reads is limited. We propose a different top-k query processing algorithm,
suitable for our low latency scenario. We show that, due to the high sparsity of the
merged ranks, past proposals are not suitable.

Similar to what we are trying to accomplish, Birdvis [99] displays the top words
in a given region; however, the technique does not scale to more than a few hundred
words. Wood et al. [100] also present a visual exploration of tags in maps, using a
standard MySQL database; but they are limited to less than 2 millions words and
they do not present any time measurements.

Although orthogonal to the core investigation done here, we lastly mention
some of the visualization techniques used strictly for display purposes of ranked
objects. RankExplorer [101] proposes a modified theme river to better visualize
ranking changes over time. Lineup [102] presents a visualization technique for multi-
attribute rankings, based on stacked bars. A Table [103] proposes an enhanced
soccer ranking table, with interactions that enable the exploration of the data along
the time dimension. Our work enables these types of visualizations to be driven at
interactive rates, rather than competes with them by offering a new vis method.

44
3.2 Motivation

We begin with a simple example. Assume a data analyst is studying shots in
National Basketball Association (NBA) games from a table similar to Table 3.1
(only three rows shown). Every row represents a shot in a game. The first row
indicates that LeBron James from Cleveland took a shot in the 5th minute of a
game from the court coordinates x= 13, and y = 28; the shot missed the basket
and he scored 0 points with that shot. The second row represents a successful two
point shot by Rajon Rondo from Boston, and the third row represents a successful
three point shot by LeBron James.

Table 3.1: Example of shot statistics in NBA games.

team player time pts x y
CLE L. James 5 0 13 28
BOS R. Rondo 5 2 38 26
CLE L. James 7 3 42 35

3.2.1 Generality vs. Speed

With such data and a SQL-like interface, an analyst could generate many
insightful aggregations for this data. The query:

select player,count(∗) as shots group by player order by shots desc limit 50

would generate a ranked list of the 50 players that took the most shots, while the
following query would rank the top 50 players by points made:

select player,sum(pts) as spts group by player order by spts desc limit 50

Although an SQL engine provides a lot of power and flexibility, these character-
istics come with a cost: solving certain queries may require scanning all records
stored in a potentially large database. Such an expensive computation may result
in an analyst wasting precious time, or worse, breaking a flow of ideas and losing a
potential insight. To solve these expensive queries more quickly, there are two alter-
natives: (1) expand the raw computational power of the query engine (e.g., using
more CPU or GPU cores); or (2) anticipate important use cases and precompute

45
information from the data so that query solutions can be composed more cheaply
during data exploration. The idea of a data cube is essentially that of (2): make an
explicit encoding of multiple aggregations a user might query later (e.g., store all
possible group-by queries on a table using SUM). Note that we can think of solution
(2) as being implemented by first running a big scanning query like in (1), but with
a goal of storing enough information to allow for a fluid experience later.

In the Nanocubes paper [47], the authors follow this second approach, and
observe that for spatiotemporal datasets with a few categorical dimensions, by
carefully encoding the aggregations in a sparse, pointer-based data structure, they
could represent, or materialize, entire data cubes efficiently. They report on
multiple interesting use cases where these data cube materializations of relatively
large datasets could fit into the main memory of commodity laptops, enabling
aggregations (of the pre-defined measure of interest), at any scale and dimension
(from city blocks to whole countries, from minutes to years), to be computed at
interactive rates.

From a very high level, the Nanocubes approach is all about binning and
counting. Each dimension in a Nanocube is associated with a pre-defined set of
bins, and the technique consists essentially of pre-computing a mapping between
every combination of bins (from the different dimensions) into some measure of all
the records incident to that combination of bins. In the simple NBA example, the
measure of interest could be the number of shots taken, but in other datasets this
could be the number of lines of code, cell phone calls, hashtags, miles driven, or any
other simple data value. Thus, the Nanocubes approach trades off flexibility (by
requiring the measure of interest and binning scheme to be determined ahead of
time) for interactivity (by providing rapid query responses during visual exploration
of the data). It should also be noted that the original data records are not stored in
the bins (just the counts) and therefore are not available as part of the Nanocube
data structure.

The main drawback of in-memory data cubes as proposed by [47] is clear: even
a minimal representation of a data cube tends to grow exponentially with the
addition of new dimensions. In other words, there is no miracle solution to the
curse of dimensionality. On the other hand, from a practical perspective, there
seems to exist a sweet spot in terms of computing resource utilization where the

46

Figure 3.1: Ranking NBA players by number of shots from the left 3-point corner
(orange) and right 3-point corner (blue) for the 2009-2010 season. The left image is
a heatmap of all shots: brighter colors indicate more shots were taken from that
location. The hotspot clearly identifies the basket.

application of in-memory data cubes can really be the driving engine of interactive
exploratory experiences that would otherwise require prohibitively larger amounts
of infrastructure.

With this context in mind, in this work we want to investigate the use of
in-memory data cubes to drive an important use case for visualization that was
not efficiently solved by Nanocubes. Namely, if we perform a multi-dimensional
selection that contains millions of objects, how can we efficiently obtain a list
of only the top-k most relevant objects with respect to our measure of interest.
For example, consider the selections we made on the basketball court example in
Figure 3.1. We want to compare the top-20 players that take shots on the left
3-point corner (orange) versus players that take shots from the right 3-point corner
(blue). In this case, knowing that there are only a few hundred players in the NBA
each year, it would not be computationally expensive to scan all players to figure
out the top 20, but there are many other cases such as GitHub projects, Flickr
images, and Microblog hashtags, where having to scan millions of objects can result
in unacceptable latencies.

3.3 Multi-Dimensional Binning Model

In the following, we establish our own notations for well-known concepts in
the database literature so that we can have a minimal, self-contained, and precise
language to refer to when presenting the various data structures.

47
The core abstraction used by Nanocubes [47], and shared by our proposal of

TopKube, is that of associating records with bins in multiple dimensions: a multi-
dimensional binning model. For example, it is natural to associate the NBA shot
records in Table 3.1 with dimensions team, player, time, points, and location
(note we chose here to combine columns x and y into a single location dimension).
Each player possibility can be associated with its own bin in the player dimension.
Team and points are handled similarly. For time, we could choose a one minute
resolution and have each minute of the game be a bin in the time dimension; for
location, we could have a 1ft. × 1ft. grid model of the court area and have each cell
in this grid be a bin in the location dimension. Note that, in this modeling, each
record is associated to one and only one bin in each dimension. More abstractly, in
our formalism, we assume each dimension i has a set of finest bins, denoted by B′i,
and a record is always associated to a single finest bin in each dimension.

In addition to the set of finest bins B′i associated with dimension i, we define
the notion of coarser bins, or bins that “contain” multiple finer bins. For example,
in the location dimension, we could group adjacent finest grid cells into 2x2 groups
and make each of these groups a coarser bin cell in the location dimension. The
interpretation of coarser bins is simply that if a record is associated with a finer bin b
then it is also associated with a coarser bin that “contains” b. In the binning model
we define here, we assume that the set of all bins Bi associated with dimension i

forms a hierarchy Hi = (Bi,πi) where its leaves are a partition of finest bins B′i.
The containment function, πi :Bi→Bi associates every bin b to another bin πi(b)
which is either the smallest (i.e. finest) bin in Hi that contains b (in case b 6= πi(b))
or it is the coarsest (or root) bin in Hi (in case b= πi(b)).

An n-dimensional binning schema S is defined as an n-ordered list of hierarchies:
S = (H1, . . . ,Hn). In order to extend the finest sets of bins for the player dimension,
B′player, into a valid bin hierarchy Hplayer = (Bplayer,πplayer), we could include
an additional coarse bin that serves as the root of this 1-level hierarchy by making
all bins in B′player its direct children. This is indeed the natural way to model
categorical dimensions with few classes. For dimensions where the number of finest
bins is not small, it is best to use multi-level hierarchies so that data can later be
accessed more efficiently in a level-of-detail fashion. For example, a natural way
to model spatial dimensions is by using a quadtree bin-hierarchy; for a temporal

48
dimension, in TopKube, we use a binary-tree bin-hierarchy. Given an n-dimensional
binning schema S, we say that the Cartesian product B = B1× . . .×Bn is the
product-bin set of S, and that an element β ∈B of this set is a product-bin of S.

To define a multi-dimensional binning model, it remains to formalize the notion
of which records in a dataset are associated to which bins and product-bins. Let R
be a set of records and S a binning schema. If we provide an association function
ai : R→ B′i for each dimension i that assigns a unique finest bin in B′i for every
record, we can naturally and uniquely define an association relation A⊆R×B

between records and product-bins. Here is how: (1) we say a general bin bi ∈Bi is
associated with record r if either bi = ai(r) or bi is an ancestor of ai(r) in Hi; (2) a
product-bin β = (b1, . . . , bn) is associated with record r, denoted by (r,β) ∈ A if bi
is associated with record r for 1≤ i≤ n.

A multi-dimensional binning model is thus a triple M = (S,R,A), where S is a
binning schema, R is dataset of records, and A is an association relation between
records and product-bins B from schema S. Given a product-bin β we use A(β)
to denote its associated set of records in model M (i.e., A(β) = {r ∈ R : (r,β) ∈
A,β ∈B}). Analogously, we use A(r) for a record r to denote its associated set of
product bins (i.e., A(r) = {β ∈B : (r,β) ∈ A}).

3.3.1 Measure on a multi-dimensional binning model

The notion of product-bins in our model provides a way to refer to groups
of records through their multi-dimensional characteristics. In our running NBA
example, all shots of LeBron James would be specified by A(βLJ), where the
product-bin βLJ ∈ B consists of the coarsest (root) bin in the bin-hierarchy of
all dimensions, except on the player dimension where we would have the bin for
LeBron James. If instead we want to refer to LeBron James’ shots in the first
minute of a game, we would replace the root bin in the time dimension of βLJ with
the bin for minute 1 of the game.

One natural approach to analyzing a set of records through their multi-dimensional
characteristics is through some notion of “size”. For example, instead of listing all
NBA shots from the 3-pt left corner, we could simply be interested in how many
shots happened in that region, or what the average or median distance from the
basket was for all of those shots. A measure for a multi-dimensional binning model

49

Figure 3.2: Dimensions of space and time are represented as bin hierarchies. (left)
Bspace is a quad-tree hierarchy: here we show a 624 bin selection around Madison
Square Garden, NY; (right) Btime is a binary hierarchy; in red we show 3 bins
corresponding to the interval [3,6].

M is simply a real function µ : B→R that associates a number to any product-bin
β of M , which captures some notion of “size” for the set of incident records A(β).
In the target applications we are interested in, we want to access measure values not
for just one product-bin at a time, but for sets of product-bins that are semantically
meaningful together. For example we might be interested in the spatial region
on the left of Figure 3.2 that consists of multiple bins. In general, one cannot
derive the measure value of the union of a set of product-bins by combining the
measure values of the individual product-bins. The median distance of an NBA
shot is such an example: we cannot derive the median of the union of two sets
of values by knowing the median of each individual set. We avoid this problem
here by restricting our universe to those of additive measures only. We start with
a real function µ : R→ R that associates a number to each record from model
M and extend this function to the whole set of product-bins by using additivity
µ(β) =∑

r∈A(β)µ(r). Additive measures can naturally count occurrences (e.g. how
many records) by making µ(r) = 1, or measure weight sums by making µ(r) = wr.
In addition to scalars, we can also generalize additive measure to produce real
vectors. For example, by making µ(r) = (1,wr,w2

r) additivity will yield a 3d vector
on any product-bin and union of product-bins (just sum the vectors). In this 3d
measure example, it is possible to post-process the vector entries to derive mean

50
and variance of weights for any set of product-bins (mean: divide second entry
by first entry). Correlations can also be derived by post-processing an additive
measure [73]. In the remainder of this chapter we assume simple additive scalar
measures. We do not deal with post-processed ones.

We refer to the combination of a multi-dimensional binning model M with a
measure µ to its product-bins as a measure model M [µ]. The idea of precomputing
and representing a measure model M [µ] so that we can quickly access µ(β) for any
product-bin β is essentially the well-known notion of a cube relational operator (if
all hierarchies in the model are all 1-level) or the more general roll up cube relational
operator (if some hierarchies have 2 or more levels). Note that in practice, when
precomputing such measure models, one does not expect to be able to retrieve the
original records A(β), but only its measure µ(β).

3.3.2 Nanocubes

In Nanocubes [47], the authors propose an efficient encoding of a measure model
M [µ] with an additional special encoding for one temporal dimension. Nanocubes
uses a pointer-based sparse data structure to represent the product-bins β that
have at least one record associated with it, and tries to make every product-bin
that yields the same set of records refer to the same memory location encoding
its measure value. Conceptually, we can think of Nanocubes as an encoding to a
mapping {β 7→ µ(β) : β ∈B,A(β) 6= ∅}. For the temporal dimension, the particular
µ values are stored in Nanocubes as summed area tables:

β 7→ ((t1,v1),(t2,v1 +v2), . . . ,(tp,v1 + . . .+vp)), (3.1)

where ti’s are all the finest temporal bins associated to the records in A(β), they are
sorted ti<ti+1, and vi is the measure of µ(β,btime=ti), i.e., product-bin with the
added constraint in the time dimension. Note that by taking differences of values
from two different indices of a summed area table one can quickly find the value of
any query (β, [ta, tb]), where β is a product-bin (without the time dimension) and
[ta, tb] is the time interval of interest.

51
3.4 TopKube

A Nanocubes-like approach can efficiently retrieve a measure of interest for any
pre-defined “bucket” (i.e., a product-bin plus a time interval). This capability can
be handy for many applications, but is especially useful for interactive visualizations
where each element presented on a screen (e.g., bar in a barchart, pixel in a heatmap)
is associated with one of these “buckets” and encoded (e.g., bar length, pixel color)
based on its value. However, suppose that, instead of simply accessing the measure
associated with specific buckets, we are actually interested in identifying the top-k
valued objects from a potentially large set of buckets. For example, “Who are the
top-20 players that make the most shots from the right-hand 3-point corner of the
basketball court?” (blue selection and ranking shown in Figure 3.1).

Since there is no ranking information encoded in a Nanocube, the only way to
obtain such a top-20 rank is to find out, for each player associated with a shot in
the selection, their total number of shots and report the top-20 players found. This
computation takes time proportional to at least the number of players associated
with the shots in the selection. While this computation in the case of NBA shots is
not very expensive (only a few thousand players ever played in the NBA), there
are interesting use cases, analogous to the player-shot case, where the number
of “players” can be quite large. For instance, project-commit on GitHub (a cloud
based project repository), tag-photo on Flickr (a cloud based photo repository), or
hashtag-post on Twitter. In these cases the number of projects, tags, and hashtags
are counted in millions instead of in thousands. The need to scan millions of objects
to solve a single top-k query can be a hard hit in the latency budget of a fluid
interactive experience.

TopKube is a data structure similar to a Nanocube: it encodes a measure in
a multi-dimensional binning model, and, with this encoding, it allows the quick
access of the measure’s value of any product-bin in the model. The main addition
of a TopKube when compared to a Nanocube is that, in order to speed up top-k
queries on one of its dimensions (e.g., top players by number of shots), a TopKube
also includes ranking information in the encoding of that dimension.

The special dimension in a TopKube is one that could be modeled as yet
another 1-level bin hierarchy, but that contains lots of bins (e.g., players in the

52
NBA example, or projects on GitHub, or tags on Flickr) and that we are interested
in quickly accessing the top valued bins from this dimension with respect to the
additive measure of interest on any multi-dimensional selection. We refer to this
special dimension of a TopKube as its key dimension, and the bins in this dimension
as keys. Note that efficiently retrieving ranks of top-k keys (and their respective
values) for an arbitrary selection of product-bins is the main goal of our TopKube
data structure. All dimensions in a TopKube, except for its key dimension, are
represented in the same way as the (non-special) dimensions of a Nanocube: as
nested bin-hierarchies. Nodes in the bin-hierarchy of a previous dimension point to
a root bin of a bin-hierarchy in the next dimension until we get to the last special
dimension (see Figure 2 of [47]). A path through the nested hierarchies down to
the last and special dimension of a TopKube corresponds to a product-bin β on all
dimensions except the key dimension.

To represent the key dimension information associated with a product-bin β,
TopKube uses the following data:

β 7→
{
q,v,σ,

∑
vi
}
, (3.2)

where q = q1 . . . qp, v = v1 . . .vp, and σ = σ1 . . .σp are arrays of equal length obeying
the following semantics: qi is the i-th smallest key that appears in β; vi is the value
of the measure of interest (e.g., occurrences) for key qi in β; and σi represents index
of the key with the i-th largest value in β. For example, the third highest values
key in a specific β is given vσ3 and corresponds to key qσ3 . In addition to arrays
q,v,σ, in order to quickly solve queries that contain no key constraints, we also
store the measure of all records in β regardless of keys, i.e., µ(A(β)). Since in all
our applications we always assume linearity of our measures, this aggregate reduces
to the sum of the values v in β.

In Figure 3.3, we show a concrete TopKube corresponding to the model shown
on the top left part of the display. This TopKube consists of one spatial dimension
(two level quad-tree hierarchy) and a key dimension. In this toy example, the keys
of the key dimension are the letters A, B, and C and the measure is simply the
number of occurrences of a letter in the corresponding product-bin. Note that
since there is only one dimension outside of the key dimension in this example, a
product-bin β corresponds exactly to one spatial bin. The TopKube data structure

53

A 1 2
C 3 1

�vq

sum 4

A 2 1
C 1 2

�vq

sum 3

B 1 2
C 2 1

�vq

sum 3

A 3 2
C 4 1

�vq

sum 7

A 2 1
B 1 2

�vq

sum 3

A 5 3
B 2 1
C 6 2

�vq

sum 13

A
C
C

B
A

C C
A

A

A
C

C
B

Figure 3.3: Concrete example of a TopKube with one spatial dimension and the
special key-dimension for counting and ranking the event types: A, B, or C. The
additional ranking information (q,v,sigma) from Equation 3.2 is shown in the
tables associated with each product-bin.

with the keys, counts, rank and total count are shown as tables in the bottom
part of the figure. Note, for example, that the top valued key in the whole model
is given by qσ1 = C and vσ1 = 6 in the right-most table which corresponds to the
coarsest spatial bin.

With this encoding for the key dimension information of a product-bin, to find
out if a given key exists in a product-bin, we can perform a binary search in the
q array (logarithmic time in the length of the array), and to access the i-th top
ranked key we perform two random accesses: first we retrieve σi and then qσi or
vσi (both constant time).

As in a Nanocube, the size of a TopKube is proportional to its number of
product-bins β plus the size of the encodings of the special dimension information
associated with each of its product-bins. In the case of a Nanocube, this extra
size per product-bin is the size of the summed area data from Equation 3.1, while
in the case of TopKube, it is given by the size of the rank aware data-structure

54
of Equation 3.2. Note that if a Nanocube and a TopKube have the same set of
product-bins β and the number of time stamps and keys encoded in their respective
special dimensions are comparable, the extra size cost of a TopKube compared to
the similar Nanocube will be the rank arrays σ. This extra size cost of a TopKube
represents a good trade-off if queries for interactive top-k keys are important
for a given application. Another important remark with respect to the sizes of
Nanocubes and TopKube is that in order to represent a Nanocube special temporal
dimension into a TopKube dimension, we have to convert it into a conventional
TopKube dimension (e.g., a binary tree where the leaves are timestamps: right
side of Figure 3.2). This adds a multiplicative logarithmic term to the size of that
dimension: while O(n) in a Nanocube, it becomes O(n logn) in a TopKube. The
advantage here is that now multiple temporal dimensions can be supported.

3.4.1 Top-K from Ranked Lists

The easiest top-k query for a TopKube happens when a single product-bin β in
involved. Suppose a user wants the top ranked keys in a multi-dimensional selection
without any constraints. This query boils down to the single coarsest product-bin
β in the cube (formed by root bins in all dimensions). In this case, obtaining the
top-k keys is the same as generating from β the list (qσ1 ,vσ1), . . . ,(qσk ,vσk), and,
clearly, it can be done in O(k) steps. In general, though, this task is not that easy.
The number of product-bins involved in the answer of a multi-dimensional selection
is not one. For common spatial brushes, time intervals, categorical selections, the
typical number of product-bins involved in a query ranges from tens up to a few
thousand. For example, in Figure 3.2, we show a 624 bin selection in space and 3
bins in time which potentially means a 1,872 product-bin selection. In this case,
the pre-stored ranks, or σ, we have for each product-bin should help speed up the
top-k query, but is not as trivial as collecting top-k keys and values in O(k) steps.
Due to the lack of a consistent name in the literature, we refer to this problem as
Top-k from Ranked Lists or TKR.

55
1: function Sweep(L, k)
2: h← []
3: for i= 1 to Length(L) do
4: if Length(L[i]) > 0 then
5: PushHeap(h, (L[i],1), LessThanID)
6: r← []
7: key← null
8: sum← 0
9: while Length(h) > 0 do

10: (`, i)← PopHeap(h, LessThanID)
11: if key 6= `[i].key then
12: InsertK(r,k,key,sum)
13: key← `[i].key
14: sum← `[i].value
15: else
16: sum← sum+ `[i].value
17: if i < Length(`) then
18: PushHeap(h, (`, i+ 1), LessThanID)
19: InsertK(r,k,key,sum)
20: return r

21: procedure InsertK(r,k,key,sum)
22: if key 6= null then
23: if Length(r) < k then
24: PushHeap(r, (key,sum), LessThanSum)
25: else if r[1].value < sum then
26: PopHeap(r, LessThanSum)
27: PushHeap(r, (key,sum), LessThanSum)

28: function LessThanID((`1, i1), (`2, i2))
29: return `1[i1].key < `2[i2].key

30: function LessThanSum((key1,sum1), (key2,sum2))
31: return sum1 < sum2

Figure 3.4: Pseudo-code for the Sweep Algorithm

3.4.2 Sweep Algorithm

Let us step back a bit. Suppose we do not store the ranking information, σ, in
each product-bin. In other words, if we go back to a rank-unaware data structure,
how can we solve the top-k keys problem? One way, which we refer to as the
Naive Algorithm, is to traverse the key and value arrays (q and v in Eq. 3.2) of
all the product-bins in the selection, and keep updating a dictionary structure of
key-value pairs. We would increment the value of a key qi already in the dictionary

56
with the current value vi found for that key in the current product-bin. Once we
finish traversing all product-bins, we would sort the keys by their values and report
the top-k ones. The Naive Algorithm is correct, but inefficient. It uses memory
proportional to all the keys present in all lists of all product-bins in the selection,
and this number might be much larger than k.

A more efficient way to find the top-k keys in the union of multiple product-bins
β1 . . .βm is shown in the pseudo-code listed in Figure 3.4. Assume in the pseudo-code
descriptions that L is a list of m key-value-rank data structures corresponding to
Eq. 3.2 of the m input product-bins. The idea is to create, from L, a heap/priority
queue where the product-bin with a current smallest key is on the top of the heap
(Lines 3-5). If we keep popping the next smallest key (Line 10) and its value from
all the lists, we will sweep all key-value pairs in key increasing order, and every
time we get a larger key (Line 11), we can be sure that the total measure of the
previous key was complete. Using this approach, we can maintain a result buffer of
size k (Line 23) instead of a dictionary with all keys in the all lists. We will refer
to this approach as the Sweep Algorithm. Note that this algorithm scans all keys
of the product-bins β in the selection, as does the Naive Algorithm, but it does
not need a potentially large buffer to solve the top-k problem. If we assume N is
the sum of the number of keys in each input product-bin, it is easy to see that the
worst case complexity of the Sweep Algorithm is O(m logm+N logk+N logm).

Although the top-k problem was not discussed in the original Nanocubes
paper [47], the Sweep Algorithm can also be used to solve top-k queries there.
Note also that Sweep Algorithm is a natural way to solve unique count queries
in both TopKube and Nanocubes (how many unique keys are present in multi-
dimensional selection).

3.4.3 Threshold Algorithm

The idea for adding the ranking information, σ, into a TopKube is that it can
potentially reduce the number of steps needed to find the top-k keys compared
to the number of steps Sweep Algorithm does. Instead of scanning all entries in
all product-bins in our selection in key order, we would like to use the ranking
information to scan first those keys with a higher chance of being in the top-k
keys (i.e., larger partial values). The hope is that, by using such a strategy, a

57
1: function TA(L, k)
2: queues← []
3: max← 0
4: for i= 1 to Length(L) do
5: if Length(L[i]) > 0 then
6: PushBack(queues, (L[i],1))
7: max← max + ValueByRank(L[i], 1)
8: r← []
9: processed←∅

10: i← 1
11: while i≤Length(queues) do
12: (`,rank)← queues[i]
13: (key,value)← ValueByRank(`,rank)
14: if rank <Length(`)
15: queues[i]← (`,rank+ 1)
16: max←max+ValueByRank(`, rank+ 1)
17: i← i+ 1
18: else
19: SwapBack(queues,i)
20: PopBack(queues)
21: max←max−value
22: if key /∈ processed then
23: for j = 1 to Length(queues) do
24: (`j ,)← queues[j]
25: if ` 6= `j
26: value← value+ValueByKey(`j ,key)
27: InsertK(r,k,key,value)
28: if Length(r)=k and max≤ r[1].value then
29: break
30: processed← processed∪{key}
31: if i > Length(queues) then
32: i← 1
33: return r

Figure 3.5: Pseudo-code for the Threshold Algorithm. ValueByRank uses σ
to retrieve the p-th largest value of L[i] in constant time. ValueByKey runs a
binary search to access the value of a given key.

small partial scan and some bookkeeping would be enough to identify the top-k
keys without a full scan. In fact, this outline of an algorithm is well-known in the
computer science community (see pseudo-code in Figure 3.5): the famous Threshold
Algorithm (TA) was described in [97]. Furthermore, TA was proven to be optimal
in a strong sense: no other algorithm can access less data than it does and still
obtain the correct answer. It essentially rotates through all ranked input lists (loop
on Line 11) popping the highest value key in each of the lists (Line 13). For each

58
popped key qi, it goes through all the other lists (Loop on Line 23) binary searching
for other key bins containing key qi. Once the aggregated value of qi is found, it
inserts qi and its final value into a running top-k result set (Line 27). Once the
algorithm figures out that no other key can have a higher value than the current
top-k keys, the computation is done (Line 29). The worst case complexity of the
Threshold Algorithm is given by O(m+Nm+N logk). Note that the Nm term
dominates this complexity and makes this worse than the one for Sweep Algorithm.

3.4.4 Hybrid Algorithm

Although Threshold Algorithm has the theoretical guarantees one would want,
in practice we have observed that the instances of the TKR problem that show up in
our use cases do not have the same characteristics as assumed in the explanations of
TA that we reviewed. In those explanations, there was an implicit assumption that
all m input lists in L contained the same set of keys. This is a natural assumption
given the implicit application usually associated with TA: the m lists corresponded
to m attribute-columns of a table with (mostly) non-zero entries. However, the
instances of the TKR problem we observed in our use cases were sparse: one key
qi is present in only a small fraction of the m lists in the query selection. This
sparseness introduces a wasteful step in the Threshold Algorithm: the loop on
Line 23. Most of the binary searches in that loop will fail to find the key that we
are searching for. A typical case we see in our instances of the TKR problem is that
on average each key is present in less than 3% of the m lists in our query selections.

While the Threshold Algorithm can have wasted cycles trying to access entries
for keys that do not exist, the Sweep Algorithm wastes no such cycles: all entries
it accesses are present in the input lists. In order to get the best results in
our experiments, we combined the strengths of TA (early termination using rank
information) and the Sweep Algorithm (no wasted accesses on sparse instances) into
a combined algorithm: the Hybrid Algorithm (pseudo-code shown in Figure 3.6).

The idea of the Hybrid Algorithm is simple: (1) raise the density of the input
problem by running the Sweep Algorithm on the smallest (easiest) input lists, and
(2) run the Threshold Algorithm on this denser equivalent problem. To make things
more concrete, think about the 624 spatial bins in Figure 3.2. We typically expect
the smaller squares in that spatial selection to have less data than larger squares.

59
1: function Hybrid(L, k, θ)
2: Sort(L, LessThanLength)
3: m←Length(L)
4: n←Length(L[m])
5: entries← n
6: isplit←m
7: for i=m−1 downto 1 do
8: entries← entries+ Length(L[i])
9: θi← entries/((m− i+ 1)∗n)

10: if θi < θ then
11: break
12: else
13: isplit← i

14: if isplit = 1 then
15: return TA(L, k)
16: else if isplit =m then
17: return Sweep(L, k)
18: else
19: aux← Sweep([L[1], . . . ,L[isplit]],∞)
20: aux← MakeRank(aux)
21: return TA([aux,L[isplit + 1], . . . ,L[m]],k)

Figure 3.6: Pseudo-code for the Hybrid Algorithm

The idea would be to merge all the lists of the smaller squares to make the problem
instance dense for the Threshold Algorithm. We formalize this process next.

The input parameter θ in the Hybrid Algorithm controls the density level of
the input problem in order to be considered ready for the Threshold Algorithm.
In other words, if, based on θ, our original input problem is too sparse for the
Threshold Algorithm, we would like to merge the smaller isplit lists using the Sweep
Algorithm (Line 19 of the Hybrid Algorithm), and then run an equivalent input
denser problem through the Threshold Algorithm (Line 21). We define the density
of a TKR instance to be N (i.e., sum of length of the q arrays in all product-bins of
the selection) number of entries in all input lists, divided by the actual number of
distinct keys (if we do the union of all m sets of keys) multiplied by m (the length
of L). Obviously, to compute this density one needs to find the number of keys
after merging all the keys in arrays q for all m lists, which is an inefficient process
that requires scanning all entries in all lists. To keep things computationally simple,
and still correlated with the density notion, we define the density level θ as an upper
bound for the actual density where we replace number of keys in the union of all m
arrays by the length of the largest array q from the m product-bins (Lines 7-13).

60

Figure 3.7: Empirical cumulative distributions of the time to retrieve the top-
32 valued keys for 100 spatiotemporal queries on the Twitter dataset. Speedup
potential of Hybrid versus Sweep, Threshold, and PostGIS.

3.5 Experimental Results

Our system was implemented using a distributed client-server architecture. The
TopKube server program was implemented in C++ and provides a query API
through HTTP. This enables flexibility: it can serve various client types ranging
from desktop to mobile applications. All rendering in this work was done on client
programs. We implemented a portable browser-based client using HTML5, D3,
and WebGL as well as an OpenGL based C++ client for more native performance.
The timing experiments relative to back-end performance in this chapter ran on a
64 core AMD Opteron with 2.3 GHZ CPU and 512 GB of RAM.

3.5.1 Performance

To determine which of the previously described algorithms works best when
solving top-k queries, we conducted an initial evaluation using the Microblogs
dataset, which is the most challenging because it has the most keys (4.7M). The
first experiment consisted of collecting 100 spatiotemporal selections ranging from
large geospatial areas (continents) to smaller regions (cities) combined with time
interval selections ranging from multiple weeks to a few hours. Next, we retrieved
the top-32 valued keys in each of the 100 selections with the different methods we
describe in Section 3.4. In addition to Sweep, Threshold, and Hybrid, we also
included PostGIS in this experiment. PostGIS is the most popular open source
GIS package that can solve the problem that we were targeting in this work. It is

61
the de facto spatial database in our opinion, which is why we chose to compare our
techniques to it. We configured PostGIS according to its official documentation for
a dataset containing key, latitude, longitude, and timestamp.

In Figure 3.7 we present the results of our first experiment in the form of
cumulative distributions: what percentage of the 100 spatiotemporal queries we
could retrieve the top-32 keys in less than t time units. All results were exactly
the same for all the methods tested including PostGIS. We are able to see that
the Hybrid Algorithm with varying θ thresholds had query times consistently
smaller than both TA and Sweep. This fact confirmed our hypothesis that we
can accelerate top-k queries by adding rank information to the index. Although
this fact seems obvious, this study shows that a natural use of rank information as
done by TA does not yield a speedup. Only a combination of the strengths of TA
and Sweep illustrated by the Hybrid approach gave the speedup we expected.
It is worth noting, however, that there was a steep increase in query times for
Hybrid on the most difficult problems (as cumulative probability approached 1),
which suggests that a better balance between Sweep and TA was possible. In
Section 3.7 we perform a more thorough experiment to understand the behavior of
our top-k methods.

3.6 Case Studies

The datasets used in our case studies are freely available and allow the extraction
of geotagged keywords: articles on Wikipedia, tags on Flickr, projects on GitHub,
and hashtags on Microblogs. The number of records (in millions) for these four
datasets are respectively: 112M, 84M, 58M, and 40M. The number of keywords (in
millions) are respectively: 3.0M, 1.6M, 1.5M, and 4.7M; thus although Wikipedia
has the most records, Microblogs has the most unique keywords. The keywords
were then used as keys in the construction of our TopKube data structure.
Wikipedia. The Wikipedia English dump datasets [104] contains edit history
for every article since its creation in 2005. Anonymous edits contain the IP
information of the user, which we used to trace their location. The final dataset,
with geographical information, contains more than 112 million edits of over three
million articles. Figure 3.8 presents a visualization of the dataset using TopKube.
It is interesting to see that even though Nevada is not considered a state with a

62

Figure 3.8: Comparing the top edited articles in Nevada and Mississippi.

high percentage of religious people, religious articles are among the highest ranked.
On the other hand, Mississippi, considered one of the most religious states in the
U.S., does not have a single article related to religion among the top-20.

Figure 3.9: Geolocated Flickr tags in Africa: the
unusual activity on the west coast are from photos
taken during a bike trip.

Flickr. The Yahoo! Flickr
Creative Commons dataset [19]
contains 100 million public
Flickr photos and videos, with
each record containing a set of
user tags and geographical in-
formation. The dataset con-
tains 84 million geolocated tags
(1.57 million unique ones). Fig-
ure 3.9 shows how exploration
can be used to gain insight of
unusual patterns in the data
along the West Coast of Africa.
By highlighting the region, we can see that there were an unusual spike of activity
during a few days in January. We create two different brushes in the timeseries:
a blue one covering the low activity days, and an orange one covering the high
activity days. We can see that the high activity spike is mostly due to photos
tagged with freewheely.com and bicycle, which were taken by a Flickr user during
his bike trip.

63

Figure 3.11: GitHub projects with most commits in three large urban centers.

1. Select Paris Area 2. Observe Uncommon Spike on Wed. Jan 7, 2015

3. Select this Spike and Observe Top-10 Hashtags

 1. #jesuischarlie 4,456
 2. #charliehebdo 4,190
 3. #lrt 1,146
 4. #paris 607
 5. #gagnetaplace 447
 6. #charliehebdo 418
 7. #off 402
 8. #lt 335
 9. #noussommescharlie 197
10. #rip 187

4. Select Charlie Hebdo’s Top Hashtags and
Observe its Temporal Volume Pattern

Figure 3.10: Twitter exploration using TopKube:
a temporal perspective of the top hashtags related
to the Charlie Hebdo terrorist attack in Paris.

Twitter. This dataset is com-
prised of publicly available geo-
tagged Twitter entries. From
each post, we extracted the lat-
itude, longitude, and hashtags
from the blog. We can use Top-
Kube to explore the most pop-
ular hashtags in order to under-
stand how trending topics vary
over time and in a given region.
Figure 3.10 presents a sequence
of exploration steps within Jan-
uary 2015 records. First we se-
lect a geographical area around Paris and find out an unusual Wednesday peak
(Jan. 7) in the volume of hashtags. By selecting this peak we quickly find evidence
of the event that caused the volume spike by inspecting the top-10 hashtags in the
current selection (i.e., Paris and Jan 7). The event in question was the terrorist
attack at the Charlie Hebdo headquarters. To understand how the hashtags created
for this event at the day of the attack faded in time, we further constrain our
selection to just the hashtags related to the terrorist attack and see that those fade
almost completely (relative to event day) after one week of the attack.
Github. The GitHub dataset was first made available by Gousios [105] and
contains all events from the GitHub public event time line. We were able to obtain

64
information on more than 58 million commits for roughly 1.5 million projects. Each
commit was geolocated based on the location of the user responsible for the action.
Figure 3.11 presents a visualization with the top-k projects of three large urban
centers. The only common project among all three regions is dotfiles, a project
for sharing customized environment files on Unix-based operating systems. It is
also interesting to notice how llvm and related projects (such as clang), are very
popular in California, but not elsewhere. This shows a highly diversified open
source community across the United States.

3.7 TopKube-Benchmark

As illustrated in the previous examples, the main use case that drove the
development of TopKube was to provide an interactive visualization front-end to
quickly access top-k “terms” for arbitrary spatiotemporal selections. Although we
observe significant speedups using the Hybrid Algorithm (e.g., θ= 0.25 in Figure 3.7)
compared to other techniques, we believe in further improvements. To assess how
different top-k algorithms (the ones shown here and future ones) perform in rank
merging problems on datasets similar to the ones we collected for this work, we
created the TopKube-Benchmark.

3.7.1 Benchmark Characteristics

The TopKube-Benchmark consists of one thousand TKR problems. Each
problem consists of a list of ranks, where each rank is defined by a list of key-value
pairs and the associated ordering information, σ, as shown in Equation 3.2. The
goal is to, given a value k, find the top-k keys and their aggregated value from
a consolidated rank of the multiple input ranks (note that this problem does not
require explicitly finding the total consolidated rank). Each of the four datasets (i.e.,
Flickr, GitHub, Microblog, and Wikipedia) contributed equally with two hundred
and fifty problems for the the TopKube-Benchmark. These problems were collected
during interactive exploratory sessions using these four datasets In Figure 3.12, we
present the distribution of four characteristics of the problems in the benchmark:
(1) number of keys; (2) number of ranks; (3) number of entries; and (4) density.

65
var. dataset 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

all 7.0E+00 1.8E+04 5.5E+04 8.7E+04 1.3E+05 1.9E+05 2.7E+05 4.0E+05 6.1E+05 1.1E+06 4.7E+06

flickr 1.4E+03 2.2E+04 5.4E+04 7.9E+04 1.2E+05 1.8E+05 2.3E+05 3.0E+05 4.7E+05 6.3E+05 1.6E+06

github 7.0E+00 4.2E+04 7.9E+04 1.2E+05 1.7E+05 2.0E+05 2.6E+05 3.7E+05 5.2E+05 7.1E+05 1.5E+06

microblog 4.2E+02 4.1E+03 3.4E+04 6.6E+04 9.3E+04 1.1E+05 1.8E+05 3.0E+05 5.4E+05 1.1E+06 4.7E+06

wikipedia 1.5E+03 2.1E+04 5.7E+04 9.4E+04 1.6E+05 3.0E+05 5.2E+05 9.4E+05 1.2E+06 1.7E+06 3.0E+06

all 1.0E+00 2.4E+01 6.0E+01 9.2E+01 1.3E+02 1.7E+02 2.4E+02 3.1E+02 4.3E+02 8.6E+02 4.3E+03

flickr 1.0E+00 5.3E+01 1.0E+02 1.4E+02 1.9E+02 2.4E+02 3.1E+02 4.0E+02 6.7E+02 1.1E+03 4.3E+03

github 1.0E+00 1.5E+01 3.2E+01 5.8E+01 8.5E+01 1.2E+02 1.4E+02 2.1E+02 3.3E+02 5.4E+02 2.6E+03

microblog 1.0E+00 8.4E+01 1.2E+02 1.5E+02 2.1E+02 2.6E+02 3.1E+02 4.3E+02 6.4E+02 1.1E+03 2.5E+03

wikipedia 1.0E+00 8.9E+00 3.8E+01 5.7E+01 7.4E+01 1.1E+02 1.6E+02 2.0E+02 3.1E+02 4.4E+02 3.0E+03

all 9.0E+00 2.5E+04 7.4E+04 1.2E+05 1.9E+05 2.7E+05 4.2E+05 6.4E+05 1.0E+06 2.1E+06 2.0E+07

flickr 1.9E+03 3.3E+04 8.8E+04 1.3E+05 2.0E+05 3.1E+05 4.2E+05 5.4E+05 8.0E+05 1.0E+06 2.0E+06

github 9.0E+00 5.0E+04 9.9E+04 1.5E+05 2.0E+05 2.7E+05 3.7E+05 5.0E+05 7.3E+05 1.0E+06 2.3E+06

microblog 5.4E+02 5.5E+03 5.0E+04 1.0E+05 1.4E+05 1.9E+05 2.8E+05 4.8E+05 8.4E+05 1.7E+06 7.0E+06

wikipedia 1.6E+03 2.4E+04 7.0E+04 1.2E+05 2.2E+05 4.8E+05 9.0E+05 2.2E+06 3.2E+06 4.8E+06 2.0E+07

all 6.9E-04 2.3E-03 3.9E-03 5.4E-03 7.0E-03 8.9E-03 1.1E-02 1.5E-02 2.3E-02 5.1E-02 1.0E+00

flickr 6.9E-04 2.0E-03 2.9E-03 4.4E-03 6.1E-03 7.2E-03 8.2E-03 1.0E-02 1.4E-02 2.8E-02 1.0E+00

github 9.1E-04 2.8E-03 4.3E-03 6.8E-03 8.7E-03 1.1E-02 1.4E-02 2.0E-02 3.4E-02 8.0E-02 1.0E+00

microblog 7.7E-04 1.6E-03 2.6E-03 3.8E-03 5.0E-03 5.9E-03 7.1E-03 9.7E-03 1.2E-02 1.6E-02 1.0E+00

wikipedia 2.0E-03 4.9E-03 6.5E-03 9.8E-03 1.3E-02 1.6E-02 2.1E-02 2.8E-02 3.7E-02 2.2E-01 1.0E+00

ke
ys

nu
m
_r
an
ks

en
tri
es

de
ns
ity

0 0.005 0.010 0.015 0.020

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Cumulative distribution of density

density

all
flickr
github
microblog
wikipedia

0 200k 400k 600k 800k 1m

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Cumulative distribution of entries

entries

all
flickr
github
microblog
wikipedia

0 100k 200k 300k 400k 500k 600k

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Cumulative distribution of keys

keys

all
flickr
github
microblog
wikipedia

0 100 200 300 400

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Cumulative distribution of num_ranks

num_ranks

all
flickr
github
microblog
wikipedia

Figure 3.12: Characteristics of the TKR problems in the TopKube-Benchmark.
Left: we plot the cumulative distributions for the number of keys, ranks, entries,
and density up to the 0.8 quantile (or 80th percentile). Right: we list the actual
values of the percentiles for these distributions.

The number of keys of a problem is simply the union of the keys present in each
rank. The number of ranks is the number of lists (of key values) from the selection.
The number of entries is the sum of the sizes of the ranks (i.e., the total number of
keys in all ranks). Note that number of entries should be larger than the number
of keys since the same key is usually present in more than one rank. Finally, the
density is simply the number of entries divided by the product of number of ranks
and number of keys. If a problem has density one, each key is present in all ranks.

If we follow the overall thick solid gray line in the keys plot (Figure 3.12, top
left), we notice that fewer than 40% of the problems involved fewer than 100k keys,
which means that most problems (more than 60%) involved 100k keys or more. If
we check the table entry in row keys/all and column 90% from the table in that
figure, we see that more than 10% of the problems involved 1.1 million keys or
more. So, given that these problem instances were collected from natural visual
interactions with the data, it is clear that large TKR problems can show up at
exploration time: a challenging problem for interactivity. In terms of the number
of ranks, we see that more than 50% of the problems have 170 or more ranks to be
processed (row num ranks/all, column 50%), and in 10% of the cases we had 860
ranks or more (lots of non-empty product-bins being hit by the multi-dimensional

66
selection). In terms of number of entries, we see that 20% of the problems had more
than 1 million entries (row entries/all, column 80%). Perhaps the most important
observation of the problems in the TopKube-Benchmark comes from their density:
the problems are really sparse (worst-case scenario for TA). If we consider 100
ranks in a problem and a density of 0.051 (90% of the problems have density 0.051
or less: see row density/all, column 90%), on average we will have one key present
in only 5.1 of the 100 ranks. These real-world, interactive explorations clearly
demonstrate the sparsity of our inputs to the TKR problem, and that the binary
searches on Line 23 in TA are largely wasted effort.

From the characteristics of the four datasets, we know that spatially the Mi-
croblog and Flickr datasets involve more spatial bins than the Wikipedia and
GitHub datasets. The reason for this is simply that both Wikipedia and GitHub
datasets were obtained by geocoding the IP address of the device associated with
an article edit or project commit which induces a more constrained set of locations
when compared to GPS locates from devices used for posts on Flickr and Twitter.
This fact explains the distribution shown in the number of ranks plot in Figure 3.12:
more product-bins are involved in the spatiotemporal selections for Flickr and
Twitter than Wikipedia and GitHub. Given the similar sparse nature of the TKR
problems that we see on these four datasets (see x-axis of the density plot in
Figure 3.12), we focus the rest of our analysis here on the entire set of one thousand
problems without splitting them by source.

3.7.2 Benchmark Performance

To assess the performance of the Sweep Algorithm, the Threshold Algorithm,
and the Hybrid Algorithm, we ran each of the algorithms on the one thousand
problems of the TopKube-Benchmark for k = 5,10,20,40,80,160,320, for a total of
seven thousand runs for each algorithm. We ran the Hybrid Algorithm with the
threshold θ varying from 0.05 to 0.95 by increments of 0.05. So, for each problem
and each k, we ran the Sweep Algorithm and the Threshold Algorithm each once,
and the Hybrid Algorithm nineteen times (one for each θ): a total of 21 different
algorithmic recipes to find the top-k terms. The (percentiles of the) distributions
of the latency (i.e., time to solve) for each of the seven thousand TKR instances by
each of the 21 strategies are shown in Figure 3.13.

67

7.66E−03 2.17E−02 3.73E−02 5.84E−02 8.58E−02 1.28E−01 1.91E−01 3.03E−01 6.21E−01 6.63E+00

3.98E−03 1.51E−02 3.17E−02 5.53E−02 9.13E−02 1.41E−01 2.18E−01 3.48E−01 7.52E−01 6.64E+00

4.01E−03 1.45E−02 3.06E−02 5.38E−02 8.91E−02 1.36E−01 2.06E−01 3.38E−01 7.35E−01 6.64E+00

3.84E−03 1.41E−02 2.94E−02 5.11E−02 8.48E−02 1.25E−01 1.98E−01 3.22E−01 7.01E−01 6.47E+00

3.63E−03 1.20E−02 2.67E−02 4.55E−02 7.71E−02 1.16E−01 1.80E−01 3.10E−01 6.75E−01 6.48E+00

3.43E−03 1.07E−02 2.27E−02 4.01E−02 6.91E−02 1.06E−01 1.67E−01 2.94E−01 6.47E−01 6.21E+00

3.16E−03 1.00E−02 2.03E−02 3.53E−02 6.17E−02 9.58E−02 1.51E−01 2.67E−01 6.09E−01 6.08E+00

2.99E−03 8.94E−03 1.90E−02 3.23E−02 5.59E−02 8.68E−02 1.39E−01 2.42E−01 5.79E−01 5.72E+00

2.47E−03 7.89E−03 1.67E−02 2.83E−02 4.97E−02 7.90E−02 1.29E−01 2.26E−01 5.29E−01 5.40E+00

2.23E−03 6.94E−03 1.45E−02 2.61E−02 4.47E−02 7.03E−02 1.14E−01 2.08E−01 4.82E−01 5.09E+00

1.78E−03 5.65E−03 1.27E−02 2.38E−02 3.97E−02 6.54E−02 1.03E−01 1.96E−01 4.54E−01 4.83E+00

1.45E−03 4.99E−03 1.14E−02 2.13E−02 3.58E−02 5.86E−02 9.41E−02 1.80E−01 4.17E−01 4.51E+00

1.23E−03 4.41E−03 9.95E−03 1.88E−02 3.21E−02 5.38E−02 8.51E−02 1.65E−01 3.94E−01 4.24E+00

1.10E−03 3.92E−03 9.19E−03 1.67E−02 2.89E−02 4.81E−02 7.76E−02 1.47E−01 3.53E−01 4.07E+00

9.85E−04 3.69E−03 8.21E−03 1.54E−02 2.63E−02 4.41E−02 7.36E−02 1.33E−01 3.19E−01 4.15E+00

9.80E−04 3.48E−03 7.63E−03 1.43E−02 2.44E−02 4.15E−02 7.22E−02 1.29E−01 3.00E−01 4.76E+00

9.79E−04 3.40E−03 7.31E−03 1.41E−02 2.37E−02 4.18E−02 7.20E−02 1.29E−01 2.97E−01 6.43E+00

1.00E−03 3.38E−03 7.36E−03 1.41E−02 2.53E−02 4.42E−02 7.65E−02 1.43E−01 3.51E−01 1.06E+01

1.08E−03 3.80E−03 8.34E−03 1.64E−02 3.03E−02 5.48E−02 1.04E−01 2.02E−01 5.48E−01 2.34E+01

1.25E−03 4.66E−03 1.17E−02 2.59E−02 5.04E−02 9.57E−02 1.83E−01 4.14E−01 1.22E+00 6.71E+01

1.32E−03 5.73E−03 1.70E−02 3.94E−02 7.75E−02 1.48E−01 3.02E−01 7.21E−01 2.43E+00 1.68E+02

Sweep

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

TA

θ \ % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

[0.000500, [0.001000, [0.005000, [0.010000, [0.050000, [0.100000, [0.500000, [1.000000, [5.000000, [10.000000,
0.5 ms. < 1 ms. < 5 ms. < 10 ms. < 50 ms. < 100 ms. < 500 ms. < 1 s. < 5 s. < 10 s.

Figure 3.13: Latency distribution (percentiles) of twenty one different strategies (1
x TA, 19 x Hybrid, 1 x Sweep) when solving the one thousand TopKube-Benchmark
problems for seven different values of k = 5,10,20,40,80,160,320. Darker blue
shades indicate smaller latencies; darker red shades indicate larger latencies.

We assume that less than 0.1 seconds latency is the appropriate level for fluid
interactivity: blue color tones in Figure 3.13 correspond to latencies that are less
than 0.1 seconds, while red tones represent high latencies (≥ 0.1s.). This table
contains clear evidence that the Hybrid strategy can improve on the latency of
the two extreme strategies: sweep (which consolidates a full rank before generating
top-k) and the threshold strategy which chases a proof of the top-k terms directly
from all ranks of the input problem. Note that for values of θ between 0.15 and 0.45,
the shades of blue have the widest reach: 70% of the problems had less than 100
ms latency, while for the sweep strategy 40% of the problems had 128 ms latency
or more (column 60%).

68

6.69E−01 7.39E−01 7.94E−01 8.42E−01 8.91E−01 9.51E−01 1.04E+00 1.19E+00 1.52E+00 1.43E+05

6.95E−01 7.62E−01 8.17E−01 8.69E−01 9.21E−01 9.86E−01 1.08E+00 1.24E+00 1.62E+00 1.29E+05

7.16E−01 7.94E−01 8.51E−01 9.05E−01 9.66E−01 1.04E+00 1.15E+00 1.33E+00 1.73E+00 1.35E+05

7.50E−01 8.30E−01 8.94E−01 9.55E−01 1.03E+00 1.12E+00 1.24E+00 1.45E+00 2.09E+00 9.34E+04

7.92E−01 8.79E−01 9.48E−01 1.01E+00 1.09E+00 1.20E+00 1.37E+00 1.68E+00 2.46E+00 1.04E+05

8.37E−01 9.29E−01 1.01E+00 1.09E+00 1.17E+00 1.30E+00 1.49E+00 1.83E+00 2.88E+00 1.35E+05

8.73E−01 9.76E−01 1.07E+00 1.16E+00 1.28E+00 1.42E+00 1.66E+00 2.14E+00 3.40E+00 1.35E+05

9.22E−01 1.04E+00 1.14E+00 1.25E+00 1.38E+00 1.57E+00 1.85E+00 2.34E+00 4.05E+00 1.43E+05

9.59E−01 1.09E+00 1.22E+00 1.34E+00 1.50E+00 1.72E+00 2.03E+00 2.71E+00 5.61E+00 1.52E+05

9.98E−01 1.15E+00 1.30E+00 1.44E+00 1.63E+00 1.87E+00 2.29E+00 3.08E+00 7.11E+00 1.37E+05

1.02E+00 1.22E+00 1.40E+00 1.58E+00 1.81E+00 2.08E+00 2.56E+00 3.53E+00 8.35E+00 1.37E+05

1.05E+00 1.30E+00 1.51E+00 1.72E+00 1.99E+00 2.34E+00 2.91E+00 4.17E+00 1.15E+01 1.37E+05

1.06E+00 1.36E+00 1.63E+00 1.89E+00 2.19E+00 2.65E+00 3.36E+00 4.83E+00 1.38E+01 1.43E+05

1.02E+00 1.40E+00 1.72E+00 2.08E+00 2.45E+00 2.99E+00 3.84E+00 5.73E+00 1.69E+01 1.52E+05

8.42E−01 1.37E+00 1.76E+00 2.21E+00 2.71E+00 3.34E+00 4.34E+00 6.59E+00 1.93E+01 1.43E+05

6.48E−01 1.21E+00 1.73E+00 2.22E+00 2.94E+00 3.74E+00 4.97E+00 7.66E+00 2.29E+01 1.37E+05

4.74E−01 8.88E−01 1.45E+00 2.11E+00 2.88E+00 3.95E+00 5.56E+00 8.62E+00 2.52E+01 1.37E+05

3.11E−01 5.52E−01 9.14E−01 1.46E+00 2.24E+00 3.47E+00 5.32E+00 8.81E+00 2.66E+01 1.52E+05

1.88E−01 3.27E−01 4.99E−01 7.58E−01 1.19E+00 1.92E+00 3.26E+00 6.60E+00 2.14E+01 1.43E+05

1.31E−01 2.38E−01 3.64E−01 5.16E−01 7.46E−01 1.11E+00 1.84E+00 3.90E+00 1.63E+01 1.52E+05

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

TA

θ \ % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1/100x < 1/10x < 1/5x < 1/2x < 1/1.5x < 1/1.1x < 1.1x < 1.5x < 2x < 5x < 10x < 100x

Figure 3.14: Speedup distribution of the Threshold and Hybrid algorithms (0 <
θ < 1) over Sweep algorithm for all problems in the TopKube-Benchmark.

To more deeply explore the speedup of the Hybrid Algorithm over the Sweep
Algorithm on the TopKube-Benchmark problems, we divide the query times (i.e.,
latency) for each problem instance i: speedupθi = sweep timei

hybrid timeθi
. If it takes two times

more for the sweep strategy to solve an instance compared to the hybrid strategy,
we say there was 2× speedup. On the other hand, if the sweep strategy takes half
the time, we say there was 1/2× speedup or, equivalently, a 2× slow down.

We consider Sweep as the baseline approach, and we want to understand
how Threshold and Hybrid compare to it. Figure 3.14 shows the cumulative
distribution of the speed-up (or slow-down if less than 1.0) for different runs of
Hybrid with threshold θ varying by 0.05 from 0 to 0.95. Note that Threshold
is simply Hybrid with θ = 0. Slow downs of 10% or more are colored in shades
of red, and speed ups of 10% or more are colored in shades of blue. For θ = 0.25,
80% of the problems had a speed up of 37% or more (column 20%); 70% of the
instances had a speed up of 76% or more (column 30%); and 10% of the instances
had a speedup of an order of magnitude (at least 19.3×).

It is also clear that our choice of θ impacts how well the Hybrid Algorithm
performs. For θ= 0.95, 50% of the latencies were 10% worse than the sweep strategy.

69

3.86E−01 6.80E−01 9.73E−01 1.24E+00 1.64E+00 2.11E+00 2.65E+00 3.61E+00 6.72E+00 5.57E+03

5.54E−01 9.96E−01 1.36E+00 1.65E+00 2.13E+00 2.69E+00 3.39E+00 4.70E+00 1.04E+01 1.43E+04

7.30E−01 1.31E+00 1.68E+00 2.13E+00 2.58E+00 3.08E+00 3.90E+00 5.81E+00 1.61E+01 2.74E+04

1.01E+00 1.48E+00 1.90E+00 2.45E+00 2.93E+00 3.53E+00 4.63E+00 6.86E+00 2.06E+01 4.60E+04

1.24E+00 1.63E+00 2.09E+00 2.62E+00 3.16E+00 3.90E+00 5.15E+00 8.37E+00 3.18E+01 8.84E+04

1.44E+00 1.83E+00 2.27E+00 2.71E+00 3.34E+00 4.22E+00 5.57E+00 9.02E+00 3.74E+01 1.35E+05

1.52E+00 1.97E+00 2.34E+00 2.83E+00 3.40E+00 4.11E+00 5.67E+00 9.81E+00 4.07E+01 1.43E+05

320

160

80

40

20

10

5

k \ % 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1/100x < 1/10x < 1/5x < 1/2x < 1/1.5x < 1/1.1x < 1.1x < 1.5x < 2x < 5x < 10x < 100x

Figure 3.15: Distribution of the speedup of the Hybrid Algorithm (θ = 0.25) over
the Sweep Algorithm broken down by k.

In general, θ = 0.25 performs very well overall and tends to be our default selection;
however, θ = 0.20 is arguably just as efficient and even beats θ = 0.25 between 40%
- 90%.

As can be seen in Figure 3.12, we explicitly included some extreme problem
instances into TopKube-Benchmark: problems with a single rank and very few
entries/keys, or conversely thousands of ranks and millions of entries/keys. These
problems show up in the 0 and 100 percentile columns of that table, as well as
the 100 percentile column of the colored distribution tables shown. We do not
place undue emphasis on those columns: a speed up of one hundred thousand
times (θ = 0.25 column 100%) is not representative of the typical cases, while the
speedups up to 90% are more typical.

3.7.3 Speedup Relative to k

In Figure 3.15, we present the speedup over Sweep by Hybrid with θ = 0.25,
for the different values of k. The blue and red shading follows the same speedup
encoding as in Figure 3.14. As expected, a higher value of k demands more
computation to find the top-k terms in the consolidated rank. For k = 5, 90%
of the instances were solved at least 52% faster than the sweep approach (row 5,
column 10%); for k <= 20, 80% had a 2× speedup; and for k = 320, 60% of the
instances had a 24% speed up. We argue that a value of k ≤ 100 is appropriate
for exploration of top terms at interactive rates. Going deeper (i.e., larger k’s) on
an investigation could use more computational resources and a full sweep based
consolidated rank could be used there.

70

0.01x 0.1x 1x 10x 100x 1000x 10000x 100000x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Cumulative speedup of Hybrid 0.25 by #keys quartiles

speedup (log scale)

(1) |keys| in [7.00E+00,6.99E+04)
(2) |keys| in [6.99E+04,1.87E+05)
(3) |keys| in [1.87E+05,5.10E+05)
(4) |keys| in [5.10E+05,4.72E+06]

0.01x 0.1x 1x 10x 100x 1000x 10000x 100000x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Cumulative speedup of Hybrid 0.25 by #ranks quartiles

speedup (log scale)

(1) |ranks| in [1.00E+00,7.70E+01)
(2) |ranks| in [7.70E+01,1.74E+02)
(3) |ranks| in [1.74E+02,3.66E+02)
(4) |ranks| in [3.66E+02,4.34E+03]

Figure 3.16: Cumulative distribution of the speedup of Hybrid with θ = 0.25 when
partitioning the benchmark problems into four (equally sized) groups based on
which quartile in the distribution of the number of keys (left) or ranks (right) each
problem falls into. On the left, the groups with greater number of keys (harder
problems) observe greater speedups. On the right, groups with fewer ranks observer
greater speedups.

3.7.4 Speedup Relative to Keys

We expect that as the TKR problems become larger (i.e., more keys), the
speedups of our approach over the Sweep approach will increase. In the left plot
of Figure 3.16, we show the distribution of the speedups of Hybrid with θ = 0.25
on four equally sized groups of problems obtained from the TopKube-Benchmark.
Again we ran each of these problems with k = 5,10,20,40,80,160,320. The first
group has the first quarter of problems with the fewest keys, the second group has
the next quarter of problems with next fewest keys, and so on up to the fourth
quarter of problems with the most keys. From the plot, we observe the expected
pattern: as problems become harder, the distribution is shifted to the right of the
cumulative distribution plot, indicating larger speedup values. For example, on the
intersection of the vertical line at 1× (same speed), we already have more than 30%
of the problems in group one (the easiest group), while this number is around 5%
for the problems in group 4 (the hardest group). This is encouraging and supports
using TopKube with Hybrid on even larger problems.

71
3.7.5 Speedup Relative to Ranks

We partitioned the problems in TopKube-Benchmark in four groups based on
which quartile of the distribution of the number of ranks they fall into. In the
right plot of Figure 3.16, we see an exact inversion of the pattern observed when
we broke down the problems by the number of keys. The speedup is greater when
fewer ranks are involved in a TKR problem. This is explained by the fact that
more ranks yield larger values for isplit in the Hybrid Algorithm, and thus a longer
sweep phase (Figure 3.6, Line 19).

3.8 Discussion

Potential Improvements. With the availability of the TopKube-Benchmark
problems and the C++ reference implementation for the algorithms presented in
this chapter, we would like to motivate new studies to improve on our results. One
issue with Hybrid is its dependency on the parameter θ. Although θ = 0.25 works
very well, we see in Figure 3.14 that is not the fastest in every case. This suggests
the need for an adaptive way to find isplit in Hybrid that is not based simply on a
fixed θ.

The main focus of this work has always been computing top-k queries inter-
actively; thus TopKube construction times and memory utilization were never
optimized, but both can be greatly improved. The construction times (in hours)
for the four datasets using a single CPU thread were respectively: 5.3h, 3.9h, 3.4h,
and 1.7h. This yields insertion rates ranging from 4.7 to 6.5 thousand records
per second. Preliminary experiments have shown that by using a multi-threaded
build, these insertion rates can increase close to linearly with the number of threads.
The memory (in gigabytes) used by TopKube for the datasets was respectively:
114GB, 20GB, 14GB, and 53GB. These numbers are significant, but again can be
greatly reduced with an optimized implementation. We note that by utilizing path
compression on sparse hierarchies (i.e., deep hierarchies with few branches) we can
reduce the reported memory usage by more than an order of magnitude.
Conclusions. As user-generated online data continues to grow at incredible
rates, ranking objects and information has never played such an important role in

72
understanding our culture and the world. Although previous techniques have been
able to create such rankings, they are inefficient and unable to be used effectively
during an interactive exploration of the ranked data. We have introduced TopKube,
an enhanced in-memory data cube that is able to generate ranked lists up to an
order of magnitude faster than previous techniques. A careful evaluation of our
techniques with public datasets has demonstrated its value. We have also made
our benchmarks available for others to make direct comparisons to our work.

73

Chapter 4

City Geometry Data: Efficient
Accumulation of City-Scale
Shadows Over Time

A rapid increase in the urbanization of the world’s population [3] has resulted
in the need for cities to densify to equitably meet the rising housing demands while
still maintaining the environmental quality of public spaces such as streets and
parks. A key quantity that plays a crucial role in defining this quality is the impact
of shadows from buildings. In particular, shadows can potentially infringe on the
“right to light” of other citizens in the community through the occlusion of direct
sunlight by shading public spaces. This can not only inhibit vegetation growth
but also reduce solar energy potential. On the other hand, shadows can also be
beneficial by reducing the urban heat island effect that paved surfaces create, or by
providing a comfortable environment for park goers. It is therefore important to
maintain a balance in the amount of shadows cast with the development of a city.

This requires extensive analysis to be performed to allow for amiable negotiations
between the various stakeholders including the city council, the urban designers
and developers, and other government agencies. However, in practice there is little
analysis of cast shadows being done to test the impact of new development primarily
due to the non-availability of the necessary tools. While cities do perform shadow
analysis, the time and cost involved limits it mostly to a small and discrete set
of times and very specific instances (e.g., see [106, 107]). It is therefore crucial

74
that efficient and interactive tools are within purview of stakeholders since this
allows for 1) a more comprehensive analysis; and 2) democratization of the planning
process – making these results accessible and allowing the general public to visualize
various scenarios will also help them contribute to the dialogue around new policies.
Interactivity in such analysis also helps architects and developers quickly iterate
over several possible designs when working on a project.

The computation of shadows is one of the most popular topics of research in
the computer graphics domain. Due to its importance in realistic rendering, several
techniques have been proposed for computing shadows both in real-time, as well as
offline [108, 109]. These techniques were designed to support a variety of scenarios
involving the scene as well as lighting options. All of these techniques, however,
typically consider only scenes with a fixed set of light(s). Orthogonal to these
techniques, we are interested in quantifying shadows over multiple time periods of
interest. In particular, we are interested in quantifying the amount of time a given
location is in shadow over the given time periods. This requires the accumulation of
shadows involving different time periods of varying lengths. In addition, we are also
interested in measuring how proposed developments can affect the accumulation of
shadows in its neighborhood.

While none of the existing techniques directly support the accumulation of
shadows over time, they can still be extended to accumulate shadows. The most
straightforward approach, also followed by currently used tools [110, 111], is to
explicitly identify shadows for each time step of a given interval. The direction of
sun light depends not only on a city’s location, but also on the time of the year.
This makes the shape of shadow highly dependent on the day and time, requiring
shadows to be computed for potentially several thousand time steps depending
on the temporal resolution. Combining this with the scale of a city, which is
typically spread over a wide area consisting of thousands of buildings, makes it
computationally expensive to be performed at a suitably high resolution. More
importantly, this increased complexity also hampers the interactivity of the analysis
pipeline. For example, to accumulate shadows in a 3-hour period over a week at a
time resolution of 1 minute would require shadows to be computed for 1260 light
positions. Doing this for larger time periods spanning several months (such as
summer or winter) at high resolutions is not practical.

75

Another option is to pre-compute all possible shadows, or appropriate data
structures such as shadow maps or shadow volumes, and use this for the analyses.
However, as mentioned above, we are interested in exploring the impact of new
constructions with respect to the shadow. This requires interactively testing and
iterating over several designs, and any pre-computation based approach will not be
able to efficiently handle such scenarios, since the data structures will have to be
recomputed based on the new set of conditions.

A third option is to model the given time interval as a set of directional lights.
This approach requires the ability to support several thousand to tens of thousand
light sources. However, existing techniques are catered towards only a small number
of light sources, making such an extension non-trivial.
Contributions. In this chapter, motivated by problems faced by architects and
city planners, we take the first step at interactively accumulating shadows over
time. We first define two shadow accumulation quantities to effectively quantify
the accumulation of shadows over time. We then propose a simple approach to
efficiently accumulate shadows over time, and which can be used to speed up
existing shadow techniques. Our shadow algorithms are then used to develop an
interactive visual exploration system targeted at city planners and architects. Our
contributions are summarized as follows:

• We propose a simple approach to accumulate shadows that implicitly tracks the
movement of shadows. It is accomplished by taking advantage of the properties
of sun movement within short time intervals.

• Our proposed approach is used to extend two common shadow techniques –
shadow maps and ray tracing, to efficiently accumulate shadows. In particular, we
present shadow accrual maps which extend standard shadow maps to accumulate
shadows over time, and inverse accrual maps which use ray tracing to identify
shadow movement, thus allowing shadows to be accumulated by simply drawing
a set of lines.

• Making use of the coherency in the sun directions, we design optimizations that
allow for the interactive accumulation of shadows over large time intervals, such
as seasons.

76
• We show experimental evaluation demonstrating the accuracy and performance

of our technique. We show that on average, the shadow accumulation using
shadow accrual maps performs around an order of magnitude faster than a
naive baseline.

• We develop Shadow Profiler, an interactive visual analysis system targeted at
city planners and architects to explore shadows in a city, and test the impact of
multiple scenarios.

• We show the utility of Shadow Profiler through case studies set in Manhattan,
New York City. The case studies evaluate accumulated shadows over Central
Park to study a set of supertall towers currently under construction that has
generated intense public debate.

4.1 Related Work

We briefly survey existing literature from three categories: visual analytics in
the context of cities, the study of shadows in urban design, and shadow computation
techniques from computer graphics.
Urban visual Analytics. Multiple visual analytics systems have been proposed
to interactively explore and analyze urban data [112]. These systems are primarily
designed to analyze urban data generated by the urban environment. For example,
there are individual visual analytics systems in transportation and mobility [23,
113, 114, 115, 116], air pollution [117], real-estate ownership [118, 119] and public
utility service problems [120]. There are also tools developed to multiple urban
data sets [22, 24]. We refer the reader to Zheng et al. [121] for a comprehensive
survey on visual analytics approaches in urban computing.

Recently, several software platforms have also emerged that aim to use urban
data sets together with city geometry to help inform the decision making process
in the development of cites. They are aimed at a range of stakeholders (architects,
city planners, developers, and the general public), such as Place I Live [122],
Transitmix [123], Flux [124], ViziCities [125], ArcGIS [126], Urbane [24], and Vis-
A-Ware [127]. Of these only Urbane, Vis-A-Ware and ArcGIS support computing
impact based on measures such as visibility and sky exposure. While ArcGIS also

77
supports the computation of shadows, it does not have the ability to accumulate
shadows and visualize this accumulation.
Shadows in Urban Design. Sunlight exposure has been a core consideration in
building design since early architectural studies. The seminal work of architect
Ralph L. Knowles in which he proposed the concept of a solar envelope [128]
has been hugely influential on studies involving the impact of shadows, and more
generally solar access. This was further explored in the following decades, by
Knowles [129, 130], and others [131, 132, 133, 134, 135], stressing the importance
of solar access in the urban context.

In the specific context of shadows, Richens and Ratti [136, 137, 138] proposed
a technique that computes shadow information based on digital elevation models
(DEM) and used it as a parameter to generate and evaluate urban models. Shadows
computed using DEM have also been incorporated into urban climate models [139,
140, 141, 142]. However, in all these cases, the computed shadow information is
approximate since DEMs are not only limited by the resolution of the images, they
also do not capture the actual shape of the buildings. Solar potential analysis also
makes use of shadow information to improve the modeling of solar radiation, as
well as assess photovoltaic energy-potential of urban environments [143]. These
approaches also explicitly identify shadows for each time step of interest either
through shadow maps [144] or using ray casting [145, 146]. Having an efficient
approach to compute and accumulate shadows will greatly help in improving
these models.
Shadow Computation Techniques. The computation of shadow information
has been extensively explored in computer graphics. We refer the reader to two
recently published books by Eisemann et al. [108] and Woo et al. [109] for a
detailed survey on recent shadow computation techniques. Real-time shadow
computation can be broadly divided into two categories – shadow map based
techniques and shadow volume based techniques. The first group encodes shadow
information of the scene geometry onto an image, which is later used when rendering
the scene. Because the shadow information is discretized as an image, shadow
map based approaches are constrained by the image resolution. Several solutions
have been proposed to overcome this problem that include using multiple shadow
maps [147, 148], pre-computing and storing high-resolution maps [149, 150], and

78
deforming the light projection matrix in order to increase the texel density near the
view camera [151, 152]. Sintorn et al. [153] proposed a shadow mapping technique
that maintains a list of points (from the camera’s POV) corresponding to each
pixel of the shadow map to avoid the aliasing artifacts. Lokovic and Veach [154]
stored multiple depth values as a parametric function to compute shadows for dense
translucent objects such as hair and fur. The proposed shadow accrual map also
uses an approach of storing multiple depth values, but the method for computing
this is different since it has to consider different time steps. Scherzer et al. [155]
presented a detailed survey on shadow map based techniques.

Shadow volumes based techniques, on the other hand, do not perform any
discretization of the scene. Instead, it uses the geometry of the scene to create
volumes of shadows in space. We refer the reader to Kolivand et al. [156] for a
survey on shadow volume approaches. Recently, Sintorn et al. [157] proposed a
shadow volume technique that assigns a volume for each triangle in the scene.
However, since this requires pre-computation, impact computation in real-time
becomes difficult. As mentioned in Section 1, accumulating shadows using any
of the above techniques requires explicitly computing shadows at each time step,
making it an expensive process.

With the current progress of massively parallel architectures, another approach
that has become popular for computing shadows is ray tracing. Djeu et al. [158]
used volumetric occluders to accelerate the tracing of rays for shadows. Kalo-
janov et al. [159] stored the scene using a two-level grid to enable interactive ray
tracing using GPUs. Feltman et al. [160] proposed a cost estimator for shadow ray
traversal, and used it to indicate early ray termination. Nah et al. [161] proposed a
surface method traversal order that accelerates shadow ray tracing.

Soft shadowing techniques [153, 162, 163, 164] can be used to obtain the desired
visual effect of shadow accumulation, by considering samples to correspond to the
time steps. This still boils down to explicitly computing shadows at each of the
time steps. Also, using all of these techniques, it is not possible to quantify the
shadow contribution with respect to the source, which is important for analysis.

To the best of our knowledge, the only approach that computes shadows over
time of day was proposed by Fernando [163, Chapter 13], which pre-computes
occlusion interval maps that store for each point the time steps when they are

79
visible to light. This is a costly pre-computation, which cannot be easily adjusted
to interactively compute impact with changes to the scene. Orthogonal to these
techniques, our approach uses the property of shadow movement over time to
accumulate shadows in real-time. Moreover, our approach can be used to extend
any of the above techniques to speedup shadow accumulation.

4.2 Temporal Shadows

In this section we first formally define two measures to quantify shadow accu-
mulation followed by describing the key property of temporal shadows, that form
the basis of our shadow accumulation techniques.

4.2.1 Shadow Accumulation

A given location can be in shadow at different times of a given day. Our goal
is to measure the quantity of shadow at these locations. In particular, we are
interested in the following quantities which define two different aspects of a shadow
with respect to a location:
Gross Shadow. measures the total time that a given location is in shadow during
a given time interval. When computed over multiple days, we compute the gross
shadow as the average time per day that location is in shadow. For example,
consider the shadows with respect to two towers in Figure 4.1 for a 3-minute
interval1. Point p1 is in shadow for the entire time interval, while points p2 and p3

are in shadow for 2 minutes of the interval.
Continuous Shadow. measures the maximum time that a given location is
continuously in shadow during a given time interval. When computed over multiple
days, it is equal to the maximum continuous duration over all days. Again, consider
the example in Figure 4.1. Points p1 and p2 are continuously in shadow for 3 and
2 minutes respectively, which is the same as the total time (gross shadow) they
are in shadow. On the other hand, even though p3 is in shadow for 2 minutes, by
having no shadow at 12:01 PM, it is continuously in shadow only over 1-minute
intervals.

1For illustrative purposes, the shadow between consecutive minutes are exaggerated. In reality,
the shadows are much closer.

80

Figure 4.1: Shadow accumulation is measured as either gross shadow or continuous
shadow. In the above example, the point p2 has both measures equal to 2 minutes
in the 3-minute interval. The point p3, on the other hand, is continuously in shadow
for only a minute, even though it is in shadow for 2 minutes in this interval.

4.2.2 Properties of Temporal Shadows

One way to accumulate shadows in a given time interval is to compute shadows
at each time step of this interval and combine them. However, as mentioned
earlier, this is a costly operation and is not interactively feasible even when the
accumulation is done only over a single week. Rather than tracking the movement
of the sun (directional light source) over time, the key idea behind our technique is
to alternatively track the movement of the shadow itself in order to accumulate
them. For the remainder of the chapter we assume the light source as directional.

Consider the time interval [t1, tn]. Given a relatively short time interval, the
movement of the sun during this interval can be considered to be linear. To validate
this assumption in practice and to identify an appropriate time interval, we compare
the actual sun direction with the interpolated direction over different interval sizes.
In particular, we first choose 1000 random time steps covering the entire year.
This ensures that directions from different times of the day as well as different
seasons are well covered. Given a time interval of n minutes, we compute the

81
Table 4.1: Mean (µ), standard deviation (σ) , and median of the cosine value
between the actual direction of sun light (in NYC) and the direction obtained by
linearly interpolating between different time interval sizes. Note that the linear
approximation starts diverging from the actual direction only when the interval
size is greater than an hour.

Minutes 5 10 30 60 120 240
µ (×10−1) 9.9999 9.9999 9.9999 9.9999 9.9997 9.9952
σ (×10−6) 1.31 0.93 1.90 4.92 25.5 415

Median 1 1 1 0.99999 0.99998 0.99965

cosine between the actual sun direction at each minute and the direction obtained
by interpolating between the directions at the start and end of that interval. A
value close to 1 indicates that the two direction vectors are the same. Table 4.1
shows the mean, standard deviation, and median of the cosine values with different
interval sizes ranging from 5 minutes to 4 hours. Note that the linear assumption
of the sun movement holds even when the value of n = 60 minutes. We start
seeing the interpolated directions diverging from the actual direction beyond this
interval. We therefore decided to use hourly intervals (n= 60 minutes) to compute
shadow accumulation.

The main idea behind our approach is the following. Consider point p1 on the
ground that is in shadow at time t1. As illustrated in Figure 4.2, let the cause of
shadow at p1 be the point s on a building. Note that s can be one of the many
possible sources of shadow at p1. Let at time tn, s cast a shadow at point pn. Then,

Figure 4.2: Shadow accrual map makes use of the linear movement of the sun over
short time periods to track the movement of shadows. Given a time interval, [t1, tn],
each point p1 in shadow at t1 is mapped to the point pn, the location of shadow at
tn due to the same shadow source, s.

82
given that the movement of the sun is linear, the shadow cast by s moves linearly
from p1 to pn. Thus, the accumulated shadow corresponding to s over the given
time interval is essentially the straight line from p1 to pn. This key observation is
used in the next two sections to design algorithms to efficiently compute shadow
accumulation over time.

4.3 Shadow Accrual Maps

We now describe shadow accrual maps, an extension to the standard shadow
mapping technique [165] that utilize the linear shadow observation to keep track of
shadows over time. The standard shadow mapping algorithm runs in two passes.
First, it renders the scene from the point of view of the light (using an orthographic
projection in the case of a directional light), and stores the depth buffer in a texture
called the shadow map. The shadow map maintains the distances between the
light and the objects that are directly illuminated. In case of directional light,
the distance is computed with respect to a plane orthogonal to the light direction.
Next, the scene is rendered from the point of view of the camera. The depth of
the surface point corresponding to each pixel is computed from the light’s point of
view as above. If this depth is greater than the depth stored in the corresponding
pixel in the shadow map, the point is marked as being in a shadow.

Our algorithm follows the same template, wherein the first step computes the
shadow accrual map for a given fixed time range, and the second step identifies
points in shadow.
Step 1: Computing Shadow Accrual Maps. Consider a given time range
[t1, tn) in which the movement of the sun is linear. Let this time range be divided
into n discrete time steps. The shadow accrual map is a 3D texture that stores the
depth values corresponding to these n time steps. However, instead of individually
computing the n 2D textures (or shadow maps) over n passes, we compute it in
one pass as follows.

Let ~d1 and ~dn be the direction of sun light at the beginning and end of the
given time range. We select a shadow plane that is orthogonal to ~d1, and further
from the light than all objects visible from the camera as shown in Figure 4.3a.
The extent of this plane is computed such that it encompasses all objects from the
point of view of the camera when projected with respect to directions ~d1 and ~dn.

83

Figure 4.3: Shadow accrual map is a 3D texture, where each slice stores the depth
values corresponding to a single time step. The depth value for a given time is
assigned by interpolating the shadow from its projection at time t1 to its projection
at time t2.

Every 3D point s in the scene is processed as follows. s is first projected onto the
shadow plane along directions ~d1 and ~dn to obtain points p1 and pn respectively.
That is, p1 and pn correspond to the locations of the shadow cast by s at times t1
and tn respectively (see Figure 4.3a). Since the shadow moves linearly within the
given time interval, the location pi of the shadow at every intermediate time step
ti, 1 < i < n, is computed as pi = p1 + (pn− p1)× tan(i′θ/n)

tan(θ) , where θ = ∠(~d1, ~dn),
and i′ = i−1. For each i, shadow depth of pi in the ith 2D slice is appropriately
updated as shown in Figure 4.3b. Instead of the distance between s and the light,
we use an equivalent measure of the distance of s to the shadow plane along the
light direction as depth. Thus, the depth of pi is simply the distance between s

and pi.
Using modern programmable GPUs, the entire operation can be performed in

parallel in a single rendering pass. As the following theorem shows, the resulting 3D
texture is equivalent to creating independent shadow maps for each of the n time
slices. Thus, there is no loss of quality when using shadow accrual maps compared
to traditional shadow maps.

Theorem 1. Consider a time interval of size n units during which the movement
of the sun is linear. Let shadows be accumulated for every 1 unit of time, i.e., the
time interval is divided into n equal time steps. Then the shadow accrual map
computed for this time interval is the same as the computing n shadow maps for
each of the n time steps.

Proof. Consider a time interal [t1, tn] of length n units. Without loss of generality,
let t1 = 0 and tn = n− 1. Let ~d1 and ~dn be the direction of light at t1 and tn

84
respectively. By definition, the first and last slices (corresponding to time t1 and
tn) of the shadow accrual map are the same as the shadow maps for these two
time steps.

Figure 4.4: The pixel p processed
by the shadow map at time i is
obtained by projecting along the
light direction ~d, which is at an
angle iθ from ~d1.

Now, consider time step t1 < i < tn, having
direction ~d. Due to linear movement of the sun,
the interpolation factor k= i−t1

tn−t1 = ∠(~d, ~d1)
∠(~dn, ~d1)

. Let

∠(~dn, ~d1) = θ. Then ∠(~d, ~d1) = iθ/n. Consider
a point s on building mesh. Let the projection
of s on the shadow plane be on point p at time
i. Without loss of generality, we use p to denote
the pixel on the shadow map texture as well.
Therefore, the point p will be processed by the
traditional shadow map algorithm for time step
i. Let the shadows at times t1 and tn be at
points p1 and pn respectively. Note that the
direction ~d1 is orthogonal to the shadow plane. Therefore, the point p is at a
distance δ tan(iθ/n) from p1 along the line [p1,pn] (see Figure 4.4).

Now consider the shadow accrual map algorithm. At time i, it processes the
point p′ = p1 + (pn−p1)× tan(iθ/n)

tan(θ) , which is the same as p, for the ith slice. Thus,
for any shadow source s, shadow accrual map processes the exact same pixels for
all time steps i as a shadow map would for the corresponding directions.

Step 2: Computing Shadows. To obtain the shadow at a given 3D point s,
we need to test its depth at the n time steps. To do this, consider again the
line between the projection of s at time t1 and time tn. As before, let pi be the
projection of s at time steps 1< i < n. If s is in shadow at time step i, then the
depth of pi will be less than the corresponding depth stored in the ith 2D slice of
the shadow accrual map (recall that the depth is the distance between s and pi).
The gross shadow is then computed by simply counting the number of points pi,
1≤ i≤ n, that are in shadow. The continuous shadow is computed by counting the
maximum number of points that are continuously in shadow. Note that if each time
step is different from 1 minute, then the gross (continuous) shadow is multiplied by
an appropriate factor.

85
4.4 Inverse Accrual Maps

The primary application of accumulated shadows in the context of cities is in
studying its impact on open urban spaces (such as parks or sidewalks), which are
typically flat surfaces. Since shadow accrual maps are based on shadow maps, the
well known issues such as aliasing and shadow acne are also carried over making
accurate quantification of shadows difficult. Ray tracing based shadow techniques,
on the other hand, have better quality. With the focus on shadow accumulation
over flat surfaces, in this section, we design a ray tracing-based approach that
makes use of the linear movement property of temporal shadows.
Inverse Accrual Maps. Consider again the example in Figure 4.2. Given that
the accumulated shadow corresponding to s is the straight line from p1 to pn, the
inverse accrual map maps the point p1 to the point pn. It is computed as follows.
First, the set of points on the plane visible from the camera are identified. This can
be accomplished by a simple modification of the rendering output of the graphics
pipeline where the world coordinates of each pixel is stored onto a buffer.

Figure 4.5: A given view point can
have more than one source of shadow.
The lth closest source of shadow is
used to represent the lth 2D slice of
the inverse accrual map.

Now, consider any point, say p1, on a
plane. The possible sources of shadow for
that point can be obtained by tracing a
ray from that point in the reverse direction
of light until there are no more intersec-
tions. Here, each intersection corresponds
to a source of shadow. The inverse accrual
map is also a 3D texture, where the ith 2D
slice stores the mapping corresponding to
the ith source. Figure 4.5 shows two points
for which there are two source points. If
there is no shadow on p1 at t1, then such a
point has no source of shadow, and is hence
mapped to infinity. To avoid shadow acne,
we ensure that there is a small distance be-
tween p1 and its shadow source (we notice that in practice, a distance of 100 cm
provides good results).

86
Computing Shadow Accumulation. Let the given time interval be divided
into n time steps. The shadows corresponding to each of the source levels are first
drawn as follows. Consider a point p1 and the corresponding mapping point pn.
The shadow at each time step is approximated to be along one of the line segments
obtained by dividing the line (p1,pn) into n− 1 segments. We maintain a n-bit
vector for each point to store the shadow corresponding to it at the different time
steps. Consider a point p. The bit corresponding to the jth time step is set to 1, if
the jth line segment pass through this point. For example, consider the illustrated
points in Figure 4.1. Given the 3-minute time interval with n= 3, each point has
a 3-bit vector associated with it. The vector corresponding to p1, p2, and p3 are
[1,1,1], [0,1,1], and [1,0,1] respectively.

After all n-bit vectors corresponding to points in the scene are populated by
drawing all valid lines from all source levels, gross shadow is computed as the sum
of bits in this vector. Continuous shadow is computed as the maximum size of a set
of consecutive 1’s in the vector. As before, gross (continuous) shadow is multiplied
by an appropriate factor to offset the size of a time step.

Figure 4.6: Possible situation
which requires inverse accrual
maps to be computed at multi-
ple source levels.

Effect of Maximum Source Level. Consider
the evolution of the shadow at point p in Fig-
ure 4.6 from time t1 to time tn. Let the line
(p1,pn) be responsible for the shadow at p at
time t, where t1 < t < tn. Let s be the source
of this shadow. For the point p to be correctly
identified as being in shadow at t for source
level l = 1, the corresponding inverse accrual
map should associate point p1 to pn. However,
as shown in Figure 4.6, this is not true because
source level l = 1 uses the closest shadow source,
which in this case is not s.

In order to obtain accurate shadow accumula-
tion, it is therefore necessary to compute inverse
accrual maps over all possible source levels. This becomes expensive especially
during dawn or dusk, since the light direction from the sun is close to horizontal and
a ray in the reverse light direction can intersect several buildings. However, in such

87
a scenario, the movement of shadows due to farther away points is very fast, causing
little loss of accuracy if these points are omitted. Thus, to maintain practical
computation times, we can limit the maximum value of l when computing the
inverse accrual map. Also, when accumulating shadows from time t1 to tn, in
addition to computing inverse accrual maps from t1 to tn, we also compute them
from tn to t1. This serves three functions: (1) during the later part of the day, the
shadow stretches with time. Thus, a point in shadow at t1 would correspond to an
area of points at tn. However, the inverse accrual map associates only a single point
at tn, and the drawn shadow line will not reflect this stretch. By reversing the time
interval, the map would then correspond to contracting shadows and will ensure
that no points are missed during shadow accumulation; (2) in the example from
Figure 4.6, note that pn for the time interval (tn, t1) is mapped to p1. Thus, the
point p is not problematic anymore when l = 1. This also helps improve accuracy
while still maintaining a small number of 2D slices; and (3) when the ray at time
t1 is parallel to a building facade, these instances are captured in inverse accrual
maps from tn to t1, thus improving the accuracy of the approach.

For the remaining of the chapter, when using inverse accrual maps, we compute
the map along both t1 to tn and tn to t1. With this addition, as we show later in
Section 4.7.2, the accumulated shadow converges close to its true value with very
low error when the source level l ≤ 3.
Discussion. Given that the computation of inverse accrual maps identifies the
sources of shadow, a simple modification to keep track of this will allow the
identification of the source of the shadow – the object(s) causing the shadow. As
we show later, this is useful for analyzing shadows and their causes in cities.

4.5 Handling Large Time Intervals

The shadow accumulation using either of the above two approaches is com-
puted for short time intervals (60 minutes) when the movement of the sun can
be approximated to be linear. Therefore, when required to accumulate shadows
spanning multiple days (or months), one way to accomplish this is to explicitly
compute shadow accrual maps for all 60-minute intervals at a resolution of 1 minute
(i.e., n= 60) corresponding to the given time period.

88
While the direction of sun light at a given time in summer will be drastically

different from the direction in winter at the same time (depending on the geograph-
ical location), the change in direction on consecutive days in summer (or winter) is
minimal. We use this key observation to significantly reduce the number of shadow
accrual maps (or inverse accrual maps) that are computed, as shown next.

For a city of interest, in a preprocessing step, we first cluster all possible light
directions into a set of bins. Consider a ray along each light direction originating
from a reference point, which is the origin. Then, the bins are defined by partitioning
a hemisphere, that is centered at this origin, into quads such that the maximum
angle (azimuthal and polar angle) corresponding to any quad is bounded. Using
a sufficiently small bound, any light direction can be represented by the bin it is
associated with.

Now, let the shadow be accumulated from time tstart to tend for a period
of d days. So each day will require shadow accrual maps (or inverse accrual
maps) to be computed for k = (tend− tstart)/n time intervals per day. This can
be represented as a collection of pairs (~sj , ~ej), 1 ≤ j ≤ k, where ~sj is the start
light direction and ~ej is the end light direction for the jth 60-minute interval.

Figure 4.7: The direction graph is used
to significantly improve the performance of
shadow accumulation.

We create a weighted graph
G(V,E), called direction graph,
where each node in V corresponds
to one bin of the above described in-
dex. There is an edge between two
nodes if there exists a direction pair
(~sj , ~ej) corresponding to those bins.
The weight of an edge is the number
of times that pair is present for the
given time interval. For example,
consider a case where shadows have
to be accumulated over two days from 10 AM to 3 PM. Let the value of n= 60 min-
utes. If the direction of sun light remains the same for both days until 1 PM, then
the resulting graph is as shown in Figure 4.7. For the first 3 hourly intervals, the
edge weights will be 2 since the corresponding directions are common between the
two days.

89
Accrual maps now have to be computed only once for each edge. This number

is significantly smaller than explicitly computing them for all k×d intervals (see
Section 4.7.2 for more details). Thus, in the above example, shadow accrual maps
(or inverse accrual maps) have to be computed only for 7 one hour intervals instead
of 10 one hour intervals (i.e., k = 5 hourly intervals over d= 2 days).

Given this setup, the different shadow accumulation quantities are computed
as follows.
Gross Shadows. A given n-minute interval corresponds to an edge in the direction
graph. Let Gj be the gross shadow computed for edge j in the graph. When
considering multiple such intervals, the gross shadow is equal to the sum of gross
shadows computed from each interval. Given the direction graph, this sum is
equal to:

G=
k∑
j=1

Gj×wj (4.1)

where wj is the weight of the corresponding edge.
Continuous Shadows. Consider an edge in the direction graph and the associated
shadow accrual maps. When computing continuous shadows for each point in the
given interval, in addition to the maximum continuous shadows for the corresponding
interval, we also store the length of the longest prefix and longest suffix of continuous
shadows (these will be the longest prefix and suffix of 1’s from the n-bit vector in
case of using inverse accrual maps). The movement of sun on each day corresponds
to a path of edges in the direction graph. For the example in Figure 4.7, paths
corresponding to the two days is illustrated in red. To compute the continuous
shadow over these edges, the corresponding accrual maps are processed in the order
of the path traversed. In particular, the prefix, maximum and suffix values are
used to “stitch” together consecutive edges. Note that these values are computed
only once for each edge, and reused multiple times. To avoid the number of accrual
maps that are cached in memory, we traverse the paths in a topological order so
that accrual maps can be discarded as soon as all paths using them are processed.

90
Map

Date & Time Selector

a b

Figure 4.8: User interface of the Shadow Profiler system consists of a map widget
together with a date and time selector. (a) We analyze the shadow impact when
inserting a new building. The divergent color map highlights areas where the new
building would add shadows (in red), or areas where it would decrease shadows (in
blue). The scale of the color map is in minutes, and can be adjusted by the user.
(b) Visualizing the shadow contribution of buildings with respect to accumulated
shadows in the selected region; a darker shade of blue indicates a higher contribution
by that building. The accumulated shadows are visualized using the color map
shown in the interface.

4.6 Shadow Profiler

The shadow accumulation approaches are used to design Shadow Profiler, a
visual exploration system that allows users to explore and analyze shadows in a
city. We now briefly describe its visual interface and discuss the analysis measures
it supports.

4.6.1 Visualization Interface

The interface (Figure 4.8) is primarily composed of two components: 1. a 3D
map widget that provides spatial context; and 2. a date & time selector widget
that allows for the user to select a time period of interest. A time period is selected
by specifying four values – a start date Dstart, start time tstart, number of days
n≥ 1, and hours per day k ≥ 0. A value of k = 0 represents a single time instant,
and the shadow corresponding to the selected date and time is visualized. When
k > 0, shadows are accumulated for k hours per day – from tstart to tstart+k over
a period n days starting from Dstart. The accumulation type, which is one of

91

Figure 4.9: Shadow accumulation over 7 hours on June 1 at three different zoom
levels when the camera is 800, 300 and 100 meters, respectively, above the ground.
Note that the level of detail, as well as the quality of the visualization improves as
the user focuses into a region of interest.

gross or continuous shadow, is selected by the user. The accumulated shadow is
averaged over the number of days, and is visualized using a color map (Figure 4.8b).
User interactions (pan, zoom, etc.) recompute shadows on the fly for the region
corresponding to the viewport, thus enabling a level-of-detail rendering. Figure 4.9
visualizes the shadow accumulation over a single day at three different zoom levels
focusing on Washington Square Park in New York City. Accumulating shadows
over a large number of days can still take few seconds depending on the approach
used (see Section 4.7.2). To support seamless interaction, we allow for a progressive
computation and rendering of the shadow accumulation. We also allow users to
brush and select polygonal regions of interest to inspect shadows. In this case, the
visualization is restricted to the specified polygon.

An important task is the assessment of shadow impact with respect to a new
building. To support this, we allow the user to select either an empty building lot,
or an existing building that is to be demolished, and replace it with a user generated
mesh. The shadows are then updated to reflect this change; this is accomplished
by computing the difference of shadows between the two states and visualizing the
result using a divergent color map. Figure 4.8a illustrates this task.

We support two visualization modes corresponding to the two approaches, as
shown in Figure 4.10. Users can choose the mode based on their objective – the
exploration mode is used for interactive visualization when users are interested in
exploring the city, and uses shadow accrual maps; and the analysis mode is used
when users are interested in a more detailed analysis and for computing the different
analysis measures (described in the next section), and uses inverse accrual maps.

92

Figure 4.10: Shadow profiler supports two modes of operation. The exploration
mode, which uses shadow accrual maps to compute shadow accumulation, is used
to explore Chicago and Boston. The analysis mode, which uses inverse accrual
maps, is used for New York City. The shadows were accumulated for 7 hours on
March 28.

4.6.2 Analysis Measures

In addition to visualizing the accumulation, we also compute three different
metrics quantifying the properties of the shadow. All of these quantities are
computed with respect to a polygonal region R of interest selected by the user.
Shadow Area. Let p ∈ R be a point that is within the selected region. The
shadow area is computed as Area=

∫
p∈R shadow(p) where shadow(p) is defined as

follows. When a single time instant is being visualized, then shadow(p) ∈ {0,1}
indicating the absence / presence of a shadow. When accumulating, shadow(p)
indicates the fraction of the time (gross or continuous) per day that point is in
shadow. In a discrete setting, this value is equal to ∑

p∈R shadow(p)× area(p),
where p represents a pixel, and area(p) is the area covered by the pixel in square
meters. To maintain accuracy, shadows rendered at a high resolution are used for
this computation.
Shadow Score. As mentioned earlier the effect of shadows can be both positive
as well as negative. For example, from a pedestrian point of view, shadows are
preferred during summer since it makes the environment more comfortable, while
disliked in winter. To evaluate this effect, we define the shadow score as:

Score=
∫
p∈R

∑
t∈T

(ωt× shadowt(p))

Here, the user divides the selected time period T into a set of time intervals t, and
assigns a weight -1≤ ωt ≤ +1 for each interval, indicating the nature of shadow for

93
that interval. For example, the user could assign a weight -1 for winter months,
+1 for summer months, and 0 for other months. shadowt(p) specifies the fraction
of the time per day a given point is in shadow during the interval t. In addition
to computing the score, it is also visualized using a divergent color map (see
Figure 4.16).
Building Contribution. The framework also allows for evaluating the shadow
contribution of buildings over the selected region r. Here, each building is assigned
a quantity equal to the shadow area resulting from that building, and visualized
using a color map as shown in Figure 4.8b.

4.7 Implementation and Experiments

The shadow accumulation techniques were implemented using C++, OpenGL 4.3,
and OpenCL 1.2. We now describe the implementation choices made, and discuss
results from our experiments evaluating the performance of the two approaches.

4.7.1 Implementation

Shadow Accrual Maps. As mentioned earlier, the problems that are common
with shadow maps also carry over to shadow accrual maps. To obtain better quality
shadows at a lower resolution itself, we chose to use the trapezoidal transforma-
tion [166], which warps the shadow depth texture onto a trapezoidal approximation
of the view frustum. This however doesn’t solve the problem of shadow acne. So
we use a bias offset to reduce the effect of shadow acne.

When computing the shadow accrual maps, since OpenGL does not allow more
than 8 frame buffer objects (and thus depth buffers), we use the features of OpenGL
4.3 to store the depth values onto a 3D image texture. By making use of atomic
operations on images, we are able to store, in a single rendering pass, the largest
depth value of a texel, for all slices of the shadow accrual map.
Inverse Accrual Maps. As mentioned in Section 4.4, computing inverse accrual
maps is accomplished by tracing a ray along the reverse light direction. Given
a maximum source level (see Section 4.7.2), the ray is traced until either the
given number of intersections is reached, or no other intersections are possible.

94
Our implementation uses a 3D grid to index the model of the city to be used
for ray tracing. The corresponding accrual map associations are simultaneously
computed during the ray traversal to output the inverse accrual maps. This part
was implemented using OpenGL shaders. Note that the ray traversal also takes
into account new buildings that are added or replaced.

OpenCL is then used to accumulate shadows – i.e., draw the shadow lines
and perform the appropriate bit operations based on accumulation type. When
rendering large time intervals, the computed values are combined with the existing
values to enable progressive rendering. User specified operations such as computing
analysis measures and impact are also performed at this stage.
Baseline Implementations. We implemented two baselines, based on shadow
maps and ray tracing, to evaluate the performance of the proposed approaches.
The shadow map baseline explicitly computes shadow maps for every minute, and
uses them to identify and accumulate shadows. To maintain a consistent quality,
we use the trapezoidal transformation for this implementation as well.

The brute force ray tracing based approach explicitly identifies the shadow for
every minute in the time interval by tracing a ray from all pixels, which are then
accumulated together.

4.7.2 Experiments

In this section, we first discuss results from our experiments evaluating the
different parameters affecting the accuracy-time trade-off. We then report the
performance of our technique when using the identified parameter values. The
experiments were performed on a workstation with a Intel Xeon E5-2620 CPU,
128 GB RAM, and an Nvidia GTX 1080 graphics card with 8 GB RAM. We use
Manhattan as the test bed for the experiments. The geometries of the buildings in
the city were obtained through Open Street Maps and consist of over 43 thousand
buildings present in Manhattan. The mesh is composed of 1.5 million triangles.
Accuracy Trade-Off Due to Direction Graph. A crucial step in improving
the performance is grouping the set of possible light directions into a set of clusters,
and using a representative of each cluster to approximate the light directions
(Section 4.5). As mentioned earlier, the maximum angle between any two directions
in a cluster is bounded by a specified angle. A small angle, while having high

95

Figure 4.11: (a) Comparing the area of accumulated shadows over 1 hour periods
computed using a smaller set of representative directions from the direction graph
with ground truth area. Note that approximating using the direction graph does
not hamper the accuracy of the shadow area. (b) Choosing the maximum source
level for inverse accrual maps.

accuracy will impede the efficiency. On the other hand, a large angle can drastically
decrease the accuracy. We found that using a bound of 5◦, we were able to get
a good accuracy-time trade-off. In particular, when testing n = 1000 random
time steps, and computing the similarity between the actual direction, and the
direction of the cluster representative, we found that the mean similarity measure
was 0.9996 with a standard deviation of 3× 10−4, implying that the clustering
provides good approximation.

To quantify the effect this approximation has on the accumulated shadows, we
chose a set of random camera positions and 1 hour time intervals, and computed the
gross shadow when using both the actual direction (ground truth) and the cluster
representative. Note that the gross shadow for this experiment was computed using
the ray tracing baseline. The shadows were computed at a resolution of 800×600.

Figure 4.11a plots the ground truth shadow area against the shadow area
computed using the cluster representative. Recall that the shadow area is the
weighted sum of pixel area, weighted by the gross shadow. The mean and median
absolute error in the area was only 0.47% and 0.35% respectively, with a standard
deviation of 0.37%, when compared to the total area. On an average, only 0.8% of
the points, with a standard deviation of 0.5%, were incorrectly tagged as being in
or not in shadow.
Maximum Source Level for Accurate Shadow Accumulation. The primary
use of inverse accrual maps is to accurately estimate the shadows for analysis. An
important parameter affecting the accuracy of this approach is the maximum source
level, i, that specifies the number of 2D slices of the inverse accrual map that is

96

Figure 4.12: Performance Evaluation. (a) Comparison with baselines. For each
method, the times are independently sorted in increasing order. Note that both
shadow accrual map and inverse accrual map consistently perform better than
the naive baselines. (b) Scalability of the proposed techniques with increasing
resolution. We used resolutions with an aspect ratio of 1:1 for this experiment
(e.g., 512 implies a resolution of 512×512). (c) Scalability with increasing time
periods. Note the significant speedup (over 50X) achieved with increasing time
periods (y-axis is in log scale).

to be computed. Recall that, given a time range [t1, tn], the map is computed for
both t1 to tn, as well as tn to t1. To identify a suitable value, we chose a set of
random hourly intervals and camera positions, and compared the computed gross
shadow between the ray tracing baseline (ground truth) and inverse accrual maps
by varying the maximum source level.

Figure 4.11b plots the average percentage error in the shadow area with in-
creasing source levels. As expected, the error decreases with increasing number of
levels. Using this plot, we fix the knee of this curve, i.e., i= 3, as the parameter for
computing inverse accrual maps. At this point, the mean error is less than 1% of
the total area. The median error for i= 3 is 0.7%, while the maximum error is 2.6%.
We found that the maximum error occurred primarily when the accumulation was
performed during dawn or dusk. This is because the shadows are not only long, but
they also move quickly. In such a case it is possible for a single point to have several
sources of shadow. Since we are considering only 3 sources, we miss considering
shadows that are due to other sources.
Performance Evaluation. For the remainder of this chapter, we use the param-
eters identified in the above experiments for computing shadow accrual maps as
well as inverse accrual maps. We compare the effect of these parameters with both
the baselines. These experiments consider the end-to-end time, which includes
computing shadow accrual maps (or inverse accrual maps), and using them to
compute and visualize the shadow accumulation.

97
For the first experiment, we consider 10 random positions, and 20 random days

spread throughout the year. For each position-day pair, we compute the gross
shadow for a period of 6 hours, starting from 9 am till 3 pm. While the selected
days cover the different seasons of the year, using a period of 6 hrs ensures that the
different positions of the sun during the day are considered as well. All shadows
for this experiment were accumulated at a resolution of 800×800. Note that this
was the output resolution. The shadow map and shadow accrual maps were at a
resolution of 1024×1024. Since inverse accrual maps compute shadow accumulation
only along the ground plane, we modified the ray tracing baseline to also do the
same. Figure 4.12a plots the average time taken to compute shadow accumulation
for an hour over the different days and camera positions. The reported time
corresponds to the median computation time over 5 independent runs. On average,
shadow accrual maps perform over 10X faster than the shadow map-based baseline,
while inverse accrual maps perform around 5.3X faster than the ray tracing baseline.

The second experiment tests the scalability of the approaches. We fixed a
position and day, and computed the gross shadows for same period of 6 hours, but
varying the resolution. For this experiment, we set the output resolution the same
as the shadow map resolution. Figure 4.12b plots the average time taken to render
an hourly interval with increasing resolution. Note that both shadow accumulation
approaches scale linearly with resolution.
Performance Improvement Due to Direction Graph. When accumulating
time periods involving multiple days, a brute force approach would explicitly
compute shadows for every minute over all days. On the other hand, when using
the direction graph there is a reuse of the shadow accrual maps (inverse accrual
maps) across time steps having similar direction. This significantly reduces the
number of shadow accrual map (inverse accrual map) computations. Figure 4.12c
plots the time taken to accumulate shadows over multiple days, accumulating for 6
hours each day. The advantage of the graph becomes apparent with increasing time
periods. For example, when accumulating over a year, the brute force approaches
would accumulate shadows for 365×6 = 2190 hourly intervals. Using the direction
graph with a 5◦ clustering bound, we only need to compute the maps corresponding
to 299 edges.

98
Table 4.2: Memory required by the different approaches for varying resolutions.
For shadow map baseline and shadow accrual map, the shadow map resolution is
the same as the rendering resolution.

Resolution Shadow Map Shadow Ray Tracing Inverse
Baseline Accrual Map Baseline Accrual Map

512×512 1 MB 60 MB 1 MB 14 MB
800×800 2.45 MB 146.5 MB 2.45 MB 34.2 MB

1024×1024 4 MB 240 MB 4 MB 56 MB
1600×1600 9.77 MB 586 MB 9.77 MB 136.7 MB
2048×2048 16 MB 960 MB 16 MB 224 MB

Memory Requirements. Since we are using n= 60, shadow accrual maps require
storage equivalent of 60 shadow maps. Thus, when using a shadow map resolution of
1024×1024, 240 MB of GPU memory is used by shadow accrual maps (depth values
stored as 4 byte floating points). In case of inverse accrual maps, the additional
memory required is directly proportional to the the number of source levels that
are used. Recall that for a given point, storage is required for mapping the point
along both t1 to tn and tn to t1 for each source level. Since the points are on a
plane, the mapped points can be represented using only 2 coordinates. Thus, with
the number of source levels l = 3, inverse accrual maps require 48 bytes of storage
per pixel. Additionally, to maintain the accumulation, it also requires n= 60 bits
per pixel. Thus, when rendering shadows at a resolution of 1024×1024, inverse
accrual maps require approximately 56 MB additional storage. Table 4.2 lists the
memory required by the different approaches when using different resolutions.

4.8 Case Studies
In this section, we demonstrate the application of the Shadow Profiler system

through two case studies in New York City, a dense urban environment where the
impact of new development on streets and parks is a constant concern. The first
case study analyzes the impact of new development, more specifically skyscrapers,
bordering on Central Park. The second compares various neighborhoods around
NYC, specifically looking at desirable shade relative to determinable shadow. Both
case studies engage a variety of stakeholders from the general public and advocacy
groups to government agencies, such as the City Council, the Department of Parks,
and the Department of City Planning.

99

Figure 4.13: Testing the impact of skyscrapers that are under construction south of
Central park. Shadows cast during summer and winter with the current state (left).
The impact of Time Warner Center (TWC) is used as a baseline for comparison
(middle). The impact of the new towers (right). Here, we are visualizing only
regions having an impact (positive as well as negative) greater than 30 minutes.

4.8.1 Impact of Buildings on Central Park

Just south of Central Park in Manhattan, a new generation of slender, supertall
skyscrapers have begun to rise. There are seven skyscrapers recently built or under
construction that range between 780 ft. and 1,490 ft. Their city-wide visibility
and proximity to Central Park have raised concerns over shadows cast on the park.
With this have come calls to revise NYC zoning regulations to include special
review for new towers over 600 ft. [167]. However, there has been little analysis of
cast shadow done to test the impact. Whatever analysis that was done was only
over fixed time instants [168], which can be misleading since slender towers cast
long shadows that move quickly. Comfort level for park-goers and impact on plant
life is dependent on the duration of shadow. The longer a person is in shadow the
cooler it gets; and plants need a certain number of hours of direct sunlight to grow.
So shadows can be both beneficial as well as detrimental depending on the context.

100
Impact of the Proposed Towers. In this study, we analyze the impact of the
skyscrapers south of Central Park by differentiating between negative and beneficial
shadows (shade) and using it to compare their performance with shorter and wider
buildings. This can also inform a broader discussion on the development and
regulation of supertall development in NYC. We divide our analysis time range
into two periods representative of negative and beneficial shadows: November and
December vs June and July. For consistency we consider an 8 hour period from
8:00 AM to 4:00 PM for each day. For these time periods we first analyze the
shadows present in the current context without the seven new skyscrapers, shown
in Figure 4.13(left). The region of interest is highlighted in the figure and the gross
shadow is visualized. We see that the shadows behave as expected – a lower angle
of the sun in winter causes shadows to cover the entire analysis area, while a higher
angle in summer results in a tighter shadow area. Note that even though buildings,
whether tall or short, cast long shadows at low sun angles (mornings and evenings),
its contribution to the overall accumulation is small as reflected in the visualization.

As a baseline for comparison, we analyze the impact of Time Warner Cen-
ter (TWC) on Central Park. TWC is a skyscraper which is famous for having
its design reworked after protests about the shadows it could cast [169]. This is
accomplished by removing the tower and computing the impact. Even though the
shadows due to TWC cover a large area, the actual area of shadow only because of
TWC is much smaller. Figure 4.13(center) visualizes the region that is impacted
by more than 30 minutes by TWC. Note that this is indeed a small region in its
immediate neighborhood extending a little on the north of the building.

Next, we examine the impact of the seven new towers. Since the new cluster
of tall towers are located in a wide area south of Central Park they affect a very
large area of the park. However, when we restrict to areas impacted by an increase
of over 30 minutes of shadows (Figure 4.13(right)), we notice that this is a small
fraction of the effected area. Note that this area while comparable for summer, is
greater in winter than the concentrated impact that TWC had at Columbus Circle.
Testing Alternate Scenarios. Finally, we use Shadow Profiler to test alternate
development scenarios for the new skyscrapers. We modeled a new set of towers,
all with the same area as the current seven, with larger floors and lower overall
heights. For building lots that allowed it, we doubled the floor plate size. For

101
N

ew
 T

ow
er

s

A
lte

rn
at

e
S

ce
na

rio

120

30

Figure 4.14: We compare the impact of shadows from new and under construction
set of skyscrapers in Manhattan (left) with an alternate scenario having shorter
towers but with the same total area (right). The towers are highlighted in purple
and the impact is visualized using a color map. Note that the impact is stronger
due to the shorter towers.

others, we used the largest floor plate size that could be accommodated on the
corresponding building lot. These allow us to test if height is indeed an issue that
needs to be regulated. This resulted in shadows that are comparable in summer,
but having a shorter spread in winter as shown in Figure 4.14. However, notice that
quantity of impact (increase in gross shadow) is greater for the short but broader
set, especially closer to their base. In fact, when using Boston’s shadow duration
regulations and considering the area impacted by greater that 60 minutes of new
shadow, the shorter towers have greater impact compared to the proposed set.

Thus, choosing the right height with respect to shadow impact is essentially
a trade-off between distribution and concentration. That is, given buildings of
similar density, a taller building distributes its shadow further away with lower
impact over that region, whereas a shorter one concentrates its impact over a
smaller area. Given the contention of tall towers’ effect on the southern portion
of Central Park, this compromise of building height and shadow concentration is
particularly important.

102

Figure 4.15: Visually comparing year long gross shadows for different neighborhoods
in Manhattan. The color map is set to visualize regions with gross shadows greater
than an hour.

4.8.2 Citywide Shade Vs. Shadow

City governments are tasked with preserving and promoting the quality of streets
and public spaces. While daylight is protected as part of this, through zoning bulk
regulations that dictate maximum buildings heights and setbacks, shadows are not
rigorously controlled. As a result, a vast majority of new developments are never
evaluated on shadows. For projects that do warrant an evaluation, as mentioned
earlier, it is only on a small scale primarily because existing tools are prohibitively
expensive to scale up the analysis. Shadow Profiler, on the other hand, can allow
city planners to analyze shadows comprehensively across the city and appropriately
frame policy. In this case study, we first analyze the following neighborhoods
for shadows over the entire year: Financial District, West Village, East Village,
Garment District, Midtown East, Hell’s Kitchen, Upper East Side, and Harlem.
As before, the shadows are accumulated for 8 hours per day. This comparison
between neighborhoods, illustrated in Figure 4.15, reveals that most neighborhoods
in Manhattan are in shadow for more than half the day on average over the entire
year. This is expected given that Manhattan has a dense, heavily built urban
grain. Closer examination of each neighborhood reveals that the concentration of

103
Table 4.3: Weights assigned to different months to characterize shade (desirable)
vs. shadow (undesirable).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
-1 -1 -0.5 0 0.5 1 1 1 0.5 0 -0.5 -1

shadows on streets and sidewalks correlates to the neighborhood’s zoned density.
However, we find that wide streets, plazas, and parks have relatively lower shadows
implying that such places are generally protected against excess shadows through
controlling building densities and heights at these locations. For example, there
is on an average less than an hour of gross shadow in the park in the center of
East Village.

We next select three neighborhoods of interest in Manhattan – West Village,
Upper East Side, and Midtown, and analyze them to comprehensively understand
how the built contexts relate to their experience through shade versus shadow.
While city regulation identifies times when shadow is undesirable [170], given NYC’s
climate, shade produced during the hot summer months is also highly desirable.
To make this distinction, we assign a positive weight for shade, i.e., shadows during
summer, and a negative weight for shadows during winter. Table 4.3 shows the
weights assigned to different months of the year. This weighing scheme is used to
compute the shadow score of these neighborhoods over a period of one year.

Figure 4.16 visualizes the overall score computed over the entire year for the
three neighborhoods. Regions with a positive score are shades of blue, while
those with a negative score are shades of red. The figure also shows the monthly
distribution plots of shadow area (orange plot) and shadow score (blue plot). A
region has an overall positive score if it is in shadow for a longer duration in summer
than in winter (i.e., more shade than shadow). However, such locations only exist
sporadically in lower building density regions of the neighborhoods. This basically
indicates that buildings typically have a negative impact with respect to pedestrian
comfort levels.

Looking back at Figure 4.13, we see that such a behavior is true even for
Central Park, where there is a higher concentration of shadows in winter than in
summer. However, these situations for parks are generally mitigated by planting
trees and other landscape features. More importantly, through analysis such as

104

West Village Midtown Upper East Side

-1

1

Figure 4.16: The overall effect of shadows on 3 popular Manhattan neighborhoods
is mostly negative. Regions with positive yearly score, highlighted by the blue
circles, are sparsely distributed in low building density areas. Note that the areas of
shadows typically decrease during summer months (orange plot) thus contributing
less to the overall score.

the one above it becomes possible to identify problematic regions and suggest
corrective measures. It can also be used by city planners to strategically incentivize
new development for positive contributions to environmental quality as well as for
designers to respond early to these objectives prior to civic review.

4.9 Discussion

Inverse Accrual Maps on Arbitrary Topography. Inverse accrual maps limit
the use of computing accurate shadow measures to flat surfaces. This could be
overcome through an hybrid approach—use inverse accrual maps for the ground,
and resort to brute force ray tracing for buildings. While this can help in a city
like NYC which is mostly flat, it will not be as helpful over arbitrary terrains. We
plan to explore other approaches, including the use of Monte Carlo ray tracing, to
efficiently accumulate shadows in such situations.
Global Illumination. Our current focus is on shadows due to direct sunlight.
Public spaces such as parks are typically large enough that the global illumination

105
effects due to the façade materials of the buildings is minimal. However, this will
not hold when considering streets / plazas surrounded by towers which have a glass
façade. In the future we plan to add functionality to support such scenarios.
Extending Other Shadowing Techniques. Any of the existing shadow maps or
shadow volume based techniques can be extended to accumulate shadows by using
the linear movement property to compute the shadows at intermediate time steps.
This would primarily require computing the shadows for the first and last time
steps within the given range (e.g., 1 hour), and appropriately using the interpolated
values for the time steps in between.
Conclusions. In this chapter we proposed two techniques, shadow accrual maps
and inverse accrual maps, to efficiently accumulate shadows over time. The key
in our approach was to implicitly track shadows based on the movement of the
sun. These techniques were then used to develop an interactive visual analysis tool
called Shadow Profiler. Through using Shadow Profiler to understand how different
building types cast shadows, city planners can design zoning regulations to meet
their goals while maximizing density and preserving public space quality. It can
also function as a learning tool for the general public to understand the effect of
shadows on cities [171]. We believe our framework is a first step to change the
current planning practice by facilitating the transition from prescriptive rule-based
zoning to performance-based zoning, and from discontinuous, isolated, and periodic
nature of environmental review to functional continuous relationships between
climate and city bulk regulations.

106

Chapter 5

Image Data: Exploring the
Myriad Visuals of a City

The understanding of the city is usually done through the quantification of a
subset of attributes from interesting urban data, such as taxi trips [23], stationary
sensors (Chapter 2), social media (Chapter 3) or geometry data (Chapter 4). These
analyses, however, are mostly limited to non-visual tabular or geometric data, and,
while capturing certain aspects of the city, fail to capture the visual appearance
of urban centers at certain times or conditions. Consider, for instance, snow
precipitation during winter, a measure that is clearly quantified in weather data
sets: it is one thing to measure 6 inches of snowfall, it is another to visualize city
streets covered with snow.

An immediate source of visuals of a city is images. The power of visual images
is well known; it is why newspapers and websites are full of images. They can
encapsulate the spatial and temporal context, as well as make otherwise abstract
ideas relatable to different audiences. By using a dense collection of images, it is
possible to visualize not only the different blocks, neighborhoods and boroughs
of a city, but also its visual changes over days of the week or seasons. Several
private companies have been collecting street-level images with the use of cameras
mounted on top of cars. Perhaps the most popular, Google Street View [172] allows
the exploration of street-level images, emphasizing the particularities of a place
rather than cartographic abstractions [173]. Prior works have used these street-level
images to predict street safety [174] and detect urban attributes [175], but have
not considered the temporal attribute intrinsic to images.

107
Our goal in this chapter is to allow the interactive exploration of the different

visuals offered by a city. We make use of a spatially and temporally dense collection
of photographs gathered by a private company in New York City, in combination
with publicly available urban data sets. To guide the exploration of this large
data set, we use different urban data, enabling the exploration of city views under
different constraints, such as weather.
Visuals of a City. In this chapter, we focus on a central element of urban planning
to explore the city visuals: a city block. Planned cities, such as New York City
and Chicago are designed following a grid plan, with rectangular blocks with size
usually ranging from 100m to 200m. The importance of blocks (and their size) is
so great that Jacos, in The Death and Life of Great American Cities, has pointed
out that it is one of the generators of diversities in cities [176]. Therefore, the
myriad of visuals of a city can be accurately represented by the views of street
blocks, in their full diversity and differences.

Figure 5.1: Reflection
of a laundry pickup car
used to capture images in
New York City.

The identification and extraction of visuals of a city
poses several challenges, however. First, we need to ef-
ficiently manage and query a collection of images large
enough to be representative of the spatial and temporal
differences inherent to a city. In our work, we use a collec-
tion of 40 million photographs captured by cars around
New York City for the period of a year. Unlike Google
Street View, however, such collection was gathered using
off-the-shelf mobile phones mounted on top of vehicles
(see Figure 5.1), without any specialized hardware and
no guarantee that consecutive photographs were taken
considering a fixed distance.

Second, we need to allow for the exploration of such large amount of panoramas.
This is possible by using popular urban data sets to guide in the exploration flow.
For example, weather data can be used to select images during snow days, and
this selection can be used to compare against hot summer days. The ability to
marry a visual depiction of a city with quantified metrics from urban data sets can
be helpful to validate data or to engage stakeholders and residents of a particular
region in a city.

108
Contributions. In this chapter, we take the first steps in designing a system for the
exploration of city views considering a large collection of unstructured photographs
as well as urban data sets. Our system is composed of two components: a database
able to support the querying of a large collection of images and urban data; and
a visual interface named Image Explorer that allows the exploration of images,
together with popular urban data sets. We present a set of case studies that
highlight the usefulness of our proposal.

5.1 Related Work

Two important aspects of our investigation are the querying of street-level
images and also its visualization and analysis. Next, we review past work related
to these topics, highlighting their difference with our current proposal.
Image Organization. The querying of large collection of images can be broadly
divided into the ones based on the visual content of the image, or the ones based
on some metadata of the image (e.g., keywords, time, location) [177]. In the
first case, images are indexed by its visual features, either low-level ones, such as
color [178] or texture [179], to high-level features, such as the ones from neural
networks [180, 181, 182]. Zhou et al. [183] presented a detailed survey on content-
based image retrieval.

Our work follows the path of metadata-based image retrieval, where each image
is indexed based on its spatial position, time, and urban data of interest. Several
recent papers propose different indexing techniques in order to speed up queries
over spatiotemporal data [184]. Here, we make use of a recent technique specifically
designed for urban data [185, 186], enabling interactivity in the exploration of the
data set.

Also related to our proposal, Barnes et al. [187] proposed a technique to find
correspondences between regions of images. Given two images, it computes a
distance function between square regions via random sampling. This idea has
been applied in several domains, such as image inpainting [188, 189], mimicking
artistis styles [190]. Recently, Barnes and Zhang [191] presented a complete survey
on patch-based methods. Considering the unstructured nature of the street-level
images at hand, we use PatchMatch to group images by their similarity.

109
Street-level Image Visualization and Analysis. One of the most famous
examples of street-level image visualization is Google Street View [172] which allows
users to explore cities through bubble images, captured by specifically designed
cameras. That system was further extended in Microsoft’s Streetside [192] to view
the side of city blocks from a large distance. While these methods allow for an
immersive experience, they require careful capture of spherical images and accurate
geotagging. Furthermore, they are not temporally dense, failing to capture the
changes over time of city blocks. We propose to use a spatially and temporally
dense set of images, captured by inexpensive cameras.

The availability of street-level images has created an opportunity to analyze the
city from a new perspective. These images have been used to assess urban envi-
ronment [193, 194], predict street safety [174], urban change [195], summarization
of city landscapes [196], skyexposure models [197], as well as detection of urban
features [175, 198, 199, 200, 201]. Arietta et al. [175] presented a method that uses
street-level images to identify relationships between the visual appearance of a city
and its attributes. More recently, Shen et al. proposed StreetVizor [202], using
Google Street View images to analyze urban forms. Recently, Sakurada et al. [203]
used a collection of images and mapping data to detect changes in buildings, apply-
ing their method to cities damaged by tsunami in Japan. In our work, we propose
to take the first steps into exploring and visualizing a temporally dense collection
of street-level images. Our system is orthogonal to the previous proposals, and can
be used as a backend in studies that want to explore the temporal component of
the data.

5.2 Street-level Images

In this section we present an overview of the street-level image data set pro-
vided by Carmera, a private company based in NYC1. Carmera is equipping cars
with a set of four inexpensive mobile phones, each one facing a particular di-
rection (i.e., front, back, left, right). As the cars travel the boroughs of NYC,
the cameras from the mobile phones capture images at a regular time interval.
Every image is accompanied by metadata, such as the approximate latitude and

1The street-level images in this dissertation have been edited to address privacy concerns.

110

Figure 5.2: Examples of images from the Carmera data set. (a),(b) Hot summer day
and cold winter day in Brooklyn. (c),(d) Spring day and winter day in Manhattan.

Figure 5.4: Temporal distribution of street-level images throughout hours of the
day (a) and days of the week (b).

longitude of the car when the image was taken, time and camera orientation.

Figure 5.3: Spatial dis-
tribution of Carmera’s
street-level images in
New York City.

It is important to note that, unlike Google Street View,
which deploys cars with the specific goal of capturing
street-level images, Carmera is equipping cars whose
main purpose is not capturing images (e.g., laundry
pickup cars). Because of this, there is no control over
illumination, weather, traffic condition or vehicular speed
(see Figure 5.2 for image examples).

Given the inexpensive method of image capturing,
Carmera’s street-level images data is more spatially and
temporally dense than other data sets, such as Google
Street View or Bing Streetside. Figure 5.3 shows the
spatial distribution of images, and Figure 5.4 presents
the distribution of images throughout the hours of the
day and days of the week. For this work, we use images
from March 2016 to February 2017, totaling 52,246,877 images (40 TB in total).

111
5.3 Visuals of a City

Our goal in this work is to allow the interactive exploration of large collections
of street-level images. In order to constraint the number of images and guide users
in this exploration, we propose to make use of the growing number of urban data
sets, many of them having a spatial or temporal component. Our main idea here is
to associate each image with data points that fall within a certain radius from the
spatial position of the image.

Consider, for instance, that we would like to visualize the views of Times
Square throughout summer. Using a SQL-like syntax, this can be posed as the
following query:

select imgs where season is Summer and location in Times Square

Another possible query is to compare Times Square during a hot summer day
and a snowy winter day. This can be posed as the following queries:

select imgs where season is Summer and temp > 30 and pos in Times Square
select imgs where season is Winter and snw > 0 and pos in Times Square

Note then that our system must be able to interactively solve queries of the
following type over an input of images (meta data) and urban data:

select imgs between t1 and t2 where constraints C

where t1 and t2 specify the time period of the data to consider. The constraints
C = ⋃

r{Cr} define the constraints over the spatio-temporal domain and also over
all urban data considered (e.g., weather information, crime, tweets). Cu specifies
a set of values for urban data set u that have to be satisfied. For example, if
we want to query images from when the temperature is greater than 30◦C, then
C = {Ctemperature = {temp > 30◦C}}. Alternatively, if we want only images that
have more than two crime reports within 100 meters and within an one hour
window of the time that the picture was taken, we would have C = {Ccrime =
{within(100,1)> 2}}, where within(ε,α) returns the number of crime occurrences
within ε meters of the image location, and within α hours of its time.

In this section, we describe the main components of our system, and discuss its
properties. We also describe extensions that enable additional features such as the
possibility to merge images, and compute time lapses.

112

Figure 5.5: Joining images (red, green and blue dots) and urban data (gray dots).
For each image, we associate the data within ε meters (a) and within α hours (b).

5.3.1 Joining Images and Urban Data

In order to support queries as the ones previously described, we perform a
spatio-temporal join between the street-level images I and each urban data set
D as a pre-processing step. Our system supports data sets that are composed of
time series (e.g., weather, SPL data described in Chapter 2), lists of latitude and
longitude coordinates (e.g., social media data as in Chapter 3) or as a 2D grid
(e.g., shadow accumulation as in Chapter 4). In the case of a join between I and
a temporal data set D, for each image i ∈ I at timestamp ti, we simply associate
value d at timestamp td, where ti = td. In the case of a join between I and a
spatio-temporal data set D, for each image i ∈ I we find the points d ∈ D that
are within ε meters of the position of the image (Figure 5.5(a)). For each d that
satisfies this constraint, we verify if the timestamp of d is within α hours of the
timestamp of i (when the image was captured) (Figure 5.5(b)). Alternatively, in a
join between I and a 2D grid D, for each image i ∈ I, we find the grid cells within ε
meters of i and apply an aggregate function on its values (e.g., average, sum, max).
We augment our image database with the result of the join computation for all
data sets considered.
Querying. Our system stores the images metadata and the result of the join
computations in a spatio-temporal database, while the images itself are stored in
secondary memory. After the query is computed, the images are retrieved from disk.

113

Figure 5.6: PatchMatch when considering two consecutive images ((a) and (b)).
(c) shows the result, with the distance between patches.

5.3.2 Image Matching

The result of the queries is a collection of images, grouped by car, along with
their approximate location and direction. We call each group a “strip”. Given
the low accuracy of the latitude and longitude information, as well as the lack of
sampling frequency, we propose to perform an additional optional step in order to
align the strips. We process each strip by performing PatchMatch [187] on each
neighboring pair of images within each strip. This gives us a distance function
between patches of consecutive images. If the overall distance is below a certain
threshold, we consider that the images are too similar and that one can be discarded.
This is especially important when considering a data set like the one used here.
More often than not a car used to capture images will not move for a long period
of time, resulting in images that are indistinguishable; by running PatchMatch we
can effectively remove these similar images and therefore the visual clutter.
PatchMatch. The PatchMatch [187] algorithm attempts to find corresponding
patches between a pair of image. For each pixel on the first image, PatchMatch
compares the patch centered on that pixel to patches in the other image, attempting
to find the best match. It accelerates the search by both examining random patches,
as well as ones based on neighboring pixels in the first image.

PatchMatch result is a dense correspondence between the images (see Figure 5.6).
For our purposes we found that PatchMatch produced better correspondences than
the invariant features often used on structure from motion. We note that, by
using PatchMatch, we loose the ability to compare features between more than
two images.

114
For our application, we slightly modified the PatchMatch algorithm to run on

a GPU. Instead of starting from the top left and going row by row, column by
column, we examine every pixel in the first image in parallel. To help accelerate the
diffusion of information, we run 4 stages without random samples in-between each
full iteration. In our system, we use the result of PatchMatch to discard images that
are too similar (i.e., average distance between patches is small), reducing the visual
clutter when a query returns images that are indistinguishable from each other.

5.4 Image Explorer

In this section, we describe our interface, Image Explorer, designed for the
interactive exploration of street-level images.

5.4.1 Desiderata

The main tasks we are interested while exploring street-level images are: 1) com-
pare the same region, but under different constraints; and 2) compare different
regions, under similar or different constraints. To accomplish this, we develop a
web-based prototype that satisfies the following requirements: 1) specify, execute,
and visualize spatio-temporal queries; and 2) ability to select and compare multiple
regions across time; and 3) visualize the images from a given region and time. We
now briefly discuss the interface details, followed by a description of the backend
query system that is handled by a server.

5.4.2 Visual Interface

The Image Explorer interface consists of two main components: a query config-
uration panel and an image groups viewer (see Figure 5.7). Next, we detail each
component of our visual interface.
Configuration Panel. This panel (Figure 5.7(right)) allows the user to specify
the queries as a set of spatiotemporal constraints. The user first specifies a spatial
region of interest, followed by a time range. In order to add constraints based on
urban data, the user adds the constraint in the format constraintname,min,max,
where constraintname is the column of interest (e.g., temperature) and min,max

is the range (e.g., 30◦C,40◦C).

115

Figure 5.7: Image Explorer overview. The user can specify a query using the Con-
figuration Panel. The resulting images are displayed in the Image Groups Viewer.

Image Groups Viewer. Using the Configuration Panel, the user can group
one or more groups of images that will be displayed in the Image Groups Viewer
(Figure 5.7(left)). Each group is composed of images that satisfy the constraints and
ordered by the time when the image was captured. In other words, the left-most
image will have a timestamp t0, the right-most image will have a timestamp t1,
and t0 < t1. In order to minimize the visual cluttering, we restrict the number of
images displayed to be proportional to the available screen space, thus avoiding
unnecessary retrieval of images. A widget on top of each group allows the user to
navigate through the series of images returned by the query, effectively navigating
through the street in the direction the car is moving.

5.4.3 Query Backend

We implemented a C++ server-based backend in order to allow easy access
to the visual interface through a web browser. The queries are submitted to the
server as HTTP requests and, once computed, the results are sent to the requesting
browser using a JSON format. The images are encoded as base64 strings and

116
compressed using the JPEG format. Even though the encoding increases the size
of file image by about one third (when compared to the original non-base64 JPEG
file), it ensures easy compatibility between different browsers. In order to allow
for an interactive experience while exploring street-level images, we make use of a
database specifically designed for spatial-temporal queries [185, 186].

5.5 Case Studies

In this section, we exemplify how our system can be used in the visual analysis
of a large collection of street-level images. The first case study goes back to a
case study previously presented in Section 4.8.2 in order to better understand the
impact of shadows in a dense neighbourhood of NYC. The second case shows how
images can be used to further enhance the study of urban noise. Finally, the third
case study explores how the system can be useful when exploring the development
of a city region. The case studies highlight the importance of the visual element
when understanding not only urban data, but also the city itself.

5.5.1 Shadow Impact

In Section 4.8.2, we highlighted the difference between positive shade during
summer and negative shadow during winter. As can be seen in Figure 4.16, there
are only a few regions in NYC where the amount of shade is actually greater than
the amount of shadow. In this first case study, we use our system to further analyze
one of these regions, the northwest corner of Bryant Park. Our goal here was to
better understand how this particular region looks when in shade or shadow.

We selected the region of interest and queried for all images captured during
summer and winter in three periods of the day. We filtered out images from cloudy
or rainy days, therefore guaranteeing that shadows were being cast by buildings.
Figure 5.8 shows some of the images that satisfied these constraints. We can notice
here that, as pointed in Section 4.8.2, this region does indeed have a greater amount
of shade than shadow. The power to marry a quantitative analysis with views from
the city can be important to engage different groups and illustrate the problem in
a much more relatable way, making it easier to drive the interest of stakeholders or
the community itself.

117

Figure 5.8: The street-level images were captured in three different periods of the
day during winter and summer, and show one of the few regions in NYC where the
amount of shade is greater than shadow.

5.5.2 Noise Complaints

The problem of urban noise was studied in Section 2.5.1, highlighting how the
passive sensing of decibel level can greatly benefit the enforcement of the noise
code in cities. Here, we use the street-level images to further assist in the analysis
of noise, especially noise from construction.

In NYC, residents can file a noise complaint to the 311 service [204], detailing
the origin of the noise and also the time it happened. This information is used by
city agencies, such as the Department of Environmental Protection, to schedule
noise enforcement visits and issue fines when appropriate. We used the 311 data

Figure 5.9: Street-level images that were captured within 100 meters and one
hour of a noise complaint in NYC. Here we show only images that were near a
construction site, which can be used to better guide city agencies when enforcing
the noise code.

118
set to select images that were captured within 100 meters of a noise complaint and
also within one hour of the complaint report, considering all boroughs of NYC.
Some of the images that satisfied these constraints are shown in Figure 5.9. All
images shown are near a construction site, identified by the green boards.

This exploration and the ability to use both a visual representation and also
urban data can be used to further assist the agencies responsible for enforcing the
noise code. By viewing the development site, the agencies can assess the stage of
construction or the presence of heavy machinery, and better schedule the visits of
noise enforcement agents.

5.5.3 Development of a City Block

The neighbourhood of Williamsburg in Brooklyn, NYC has been the focus
of construction initiatives in recent years, with old houses giving way to modern
buildings in a phenomenon that is rapidity changing the look of the region. Our
system provides an intuitive way to visually grasp these changes through the course
of a year, and analyze the evolution of a construction site from the early stages of
development until the inauguration of a new building.

In this case study, we used construction permits issued by the Department of
Buildings of New York City to assist in our exploration. We started by filtering
the images that were captured within 100 meters of an active construction site.
By selecting a street block of Williamsburg, we query for images from April 2016,
identifying an active construction site in its early stages of development. We then
selected images until March 2017, when a new store was inaugurated. Through the

Figure 5.10: Construction of a new development in the neighbourhood of Williams-
burg in Brooklyn, from April 2016 (top left) to March 2017 (bottom right), when a
new store was inaugurated.

119
use of street-level images, it is possible to see the entire evolution of the development
(Figure 5.10), gradually seeing how this particular city block is changing through
the year.

5.6 Discussion

In this chapter, we presented the first steps into exploring a large collection of
street-level images. We presented a system that makes use of an efficient backend
to drive the interactivity of a web-based tool that allows the exploration of images
in conjunction with urban data sets. Using the system, we presented three different
case studies, highlighting the usefulness in marrying data and image to further
analyze urban problems.

While our current system can drive interactivity in the exploration of this data
set, there are a few limitations that we plan to address in future work. The first is
the organization of the images itself. In order to simplify the exploration process,
we plan to use image processing techniques to assign images to particular buildings;
instead of filtering by a certain region, it would be possible to select a building (or
lot) of interest and query for all images that show that particular site. This would
also address a serious problem with the data set: in regions with a high density of
buildings, such as the Financial District, the geolocation accuracy of the images
is severely compromised. A process where we assign images to buildings would
alleviate this problem.

Considering the recent developments in video compression, we plan to investigate
the use of compression methods to minimize the storage requirements, assessing the
feasibility of a data structure capable of indexing spatiotemporal images without a
large memory overhead. Another interesting direction is the stitching of consecutive
images in order to avoid the visual clutter. Stitching techniques have been applied
previously in the visualization of street-level images [205], but not considering a
temporally dense collection of images. It would be interesting to pursue this line of
research in order to minimize the number of images shown to the user and make
the exploration process more intuitive.

120

Chapter 6

Conclusions and Future Work

This dissertation presented four main contributions to the interactive analysis
of urban data. The first contribution was Time Lattice [31], a data structure that
enables the interactive visual analysis of large time series. We also presented a
visual interface that used the structured and allowed domain experts to explore a
large set of time series generated from sensors deployed throughout New York City
that measure the decibel level at a high resolution. The second contribution was
TopKube [32], a data structured that aims to support the interactive computation
of spatiotemporal Top-K queries, allowing the exploration of not only where and
when things are happening, but also what is happening. The third contribution was
Shadow Accrual Maps [36], a data structured that enables the fast accumulation of
shadows. Together with the structure, we also proposed a visual interface that was
used by domain experts to explore the impact of shadows in a number of scenarios
set in New York City. Finally, the fourth contribution of this dissertation was a
system that allowed the interactive exploration of a large collection of street-level
images, showing how the visual aspect of a city changes over space and time.

The contributions presented here received a great deal of attention from different
stakeholders, such as journalists, city residents and city agents. This engagement
with the community can lead to the identification of new fundamental research
challenges, that contribute to a greater understanding of several problems that face
cities today. Next, we present some of these challenges and highlight interesting
directions of research in the field of visualization.

121
Adoption by Domain Experts. The contributions of this dissertation were
used by domain experts through visual interfaces that were designed with the
goal of exploring a specific data set. However, it is common that domain experts
have their own pipeline of analysis and preferred tools, and migrating to a new
environment might be too cumbersome for them. For instance, many scientists
are used with frameworks such as pandas, scikit or languages such as Python
and R. Our contributions here, and many of the data structures proposed in the
community in recent years, are very specific and do not integrate well (or at all) with
popular frameworks and languages. An interesting direction is the investigation
of a platform for spatiotemporal urban data, where data scientists could choose
between different data structures and indexes for their tasks, but maintain the same
high-level abstractions and analysis pipeline offered by their preferred frameworks
and languages.
Simulation of Urban Phenomena. In this dissertation, we presented the com-
putation of city-scale shadow accumulation with the use of highly-accurate building
models. There are, however, several urban phenomena that are still not analyzed at
this scale or accuracy. An example of this is noise propagation; with the availability
of data sets describing major sources of noise (e.g., bus, construction, trains),
coupled with highly-accurate city models, it would be interesting to model how
noise propagates through the urban environment.
Optimizing City Blocks. Procedural modeling is becoming increasingly popular
in urban planning applications. The work by Venegas et al. [206] proposed a
technique that allows the generation of 3D urban models based on a set of parameters
(e.g., sky exposure, distance to park). Doraiswamy et al. [207] recently presented
a topology-based approach for the creation of view-enhanced tower designs. An
interesting direction to pursue would be to enhance these methods by adding a set
of complex and dynamics parameters, such as the shadow accumulation presented
here. One can image the design of buildings (or city blocks) that conform to a set
of constraints, such as the amount of direct sunlight reaching public spaces.

122

Appendix A

Additional Shadow Map
Experiments

Efficiency of the Shadow Map Baseline. To demonstrate the efficiency of our
shadow map implementation used as baseline in our experiments, we compare it
with an industry standard game engine. For this comparison, we simulated the
same experiment as in Figure 4.11(a) of the dissertation. This experiment computes
the average time to render 60 shadow maps (corresponding to each minute of an
hour) for different camera positions and sun positions. Using the shadow map
baseline, this time varies between 100 ms and 240 ms — the time taken to render
shadows for a single time step is between 1.5 ms and 4 ms. In fact, the time to
render shadows for a given single time step even when the shadow map resolution
is 2048×2048 is still less than 5 ms.

Figure A.1: Comparing our shadow map baseline implementation with shadow
computation on an industry standard game engine. The figure plots the average
time taken to compute shadows for an hour with a resolution of 1 minute, that is,
60 shadow maps are computed per hour.

123
Using the game engine, we simply computed shadows for 60 time steps per hour

for the same camera positions and sun positions. We however did not perform any
accumulation – accumulation will only add an additional step in the game engine
pipeline to store these shadows to do the necessary computation. This not only
takes up more space, but also requires additional time. Note that even without
accumulation being explicitly computed, the performance of our baseline shadow
map implementation is on par with that of the game engine (Figure A.1).

124

Bibliography

[1] Meredith Reba, Femke Reitsma, and Karen C. Seto. Spatializing 6,000 years
of global urbanization from 3700 BC to AD 2000. Scientific Data, 3, 2016.

[2] Edward L. Glaeser, Hedi D. Kallal, José A. Scheinkman, and Andrei Shleifer.
Growth in cities. Journal of Political Economy, 100(6):1126–1152, 1992.

[3] UN Department of Economic and Social Affairs. UN world urbanization
prospects: The 2014 revision highlights. Available: http://esa.un.org/
unpd/wpp/. Accessed on: Oct. 23, 2017.

[4] John Snow. On the mode of communication of cholera. Edinburgh Medical
Journal, 1(7):668–670, 1856.

[5] Max Weber. The City. 1921.

[6] Louis Wirth. Urbanism as a way of life. American Journal of Sociology,
44(1):1–24, 1938.

[7] Robert E. Park, Ernest W. Burgess, and Roderick D. McKenzie. The City.
1925.

[8] Ruth Shonle Cavan. The Chicago School of Sociology, 1918-1933. Urban Life,
11(4):407–420, 1983.

[9] Wayne G. Lutters and Mark S. Ackerman. An introduction to the Chicago
School of Sociology. Interval Research Proprietary, pages 02–06, 1996.

[10] Stanley K. Smith. Toward a methodology for estimating temporary residents.
Journal of the American Statistical Association, 84(406):430–436, 1989.

http://esa.un.org/unpd/wpp/
http://esa.un.org/unpd/wpp/

125
[11] Doug Washburn and Usman Sindhu. Helping CIOs understand “smart city”

initiatives. Growth, 17(2):1–17, 2009.

[12] Vito Albino, Umberto Berardi, and Rosa Maria Dangelico. Smart cities:
Definitions, dimensions, performance, and initiatives. Journal of Urban
Technology, 22(1):3–21, 2015.

[13] NYC Open Data. Available: https://nycopendata.socrata.com. Accessed
on: Oct. 23, 2017.

[14] San Francisco Data. Available: https://data.sfgov.org. Accessed on: Oct.
23, 2017.

[15] Chicago Data Portal. Available: https://data.cityofchicago.org. Ac-
cessed on: Oct. 23, 2017.

[16] Brett Goldstein and Lauren Dyson. Beyond Transparency: Open Data and
the Future of Civic Innovation. Code for America Press, 2013.

[17] Luciano Barbosa, Kien Pham, Claudio T. Silva, Marcos R. Vieira, and Juliana
Freire. Structured open urban data: Understanding the landscape. Big Data,
2(3):144–154, 2014.

[18] Twitter public API. Available: https://dev.twitter.com/streaming. Ac-
cessed on: Oct. 23, 2017.

[19] Bart Thomee, David A. Shamma, Gerald Friedland, Benjamin Elizalde, Karl
Ni, Douglas Poland, Damian Borth, and Li-Jia Li. YFCC100M: The new data
in multimedia research. Communications of the ACM, 59(2):64–73, 2016.

[20] Juliana Freire, Cláudio T. Silva, Huy T. Vo, Harish Doraiswamy, Nivan
Ferreira, and Jorge Poco. Riding from urban data to insight using New York
City taxis. IEEE Data Engineering Bulletin, 37(4):43–55, 2014.

[21] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

https://nycopendata.socrata.com
https://data.sfgov.org
https://data.cityofchicago.org
https://dev.twitter.com/streaming

126
[22] Remco Chang, Ginette Wessel, Robert Kosara, Eric Sauda, and William

Ribarsky. Legible Cities: Focus-dependent multi-resolution visualization
of urban relationships. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1169–1175, 2007.

[23] Nivan Ferreira, Jorge Poco, Huy T Vo, Juliana Freire, and Cláudio T Silva.
Visual exploration of big spatio-temporal urban data: A study of New York
City taxi trips. IEEE Transactions on Visualization and Computer Graphics,
19(12):2149–2158, 2013.

[24] Nivan Ferreira, Marcos Lage, Harish Doraiswamy, Huy T. Vo, Luc Wilson,
Heidi Werner, Muchan Park, and Claudio T. Silva. Urbane: A 3D framework
to support data driven decision making in urban development. In Proceedings
of the 2015 IEEE Conference on Visual Analytics Science and Technology
(VAST), pages 97–104, 2015.

[25] Gennady Andrienko, Natalia Andrienko, Peter Bak, Daniel Keim, and Stefan
Wrobel. Visual analytics focusing on spatial events. In Visual Analytics of
Movement, pages 209–251. Springer Berlin Heidelberg, 2013.

[26] Gennady Andrienko, Natalia Andrienko, Christophe Hurter, Salvatore
Rinzivillo, and Stefan Wrobel. Scalable analysis of movement data for ex-
tracting and exploring significant places. IEEE Transactions on Visualization
and Computer Graphics, 19(7):1078–1094, 2013.

[27] Harish Doraiswamy, Nivan Ferreira, Theodoros Damoulas, Juliana Freire,
and Claudio T. Silva. Using topological analysis to support event-guided
exploration in urban data. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2634–2643, 2014.

[28] Jorge Poco, Harish Doraiswamy, Huy T. Vo, João L. D. Comba, Juliana Freire,
and Cláudio T. Silva. Exploring traffic dynamics in urban environments using
vector-valued functions. Computer Graphics Forum, 34(3):161–170, 2015.

127
[29] Fabio Miranda, Harish Doraiswamy, Marcos Lage, Kai Zhao, Bruno Gonçalves,

Luc Wilson, Mondrian Hsieh, and Cláudio T. Silva. Urban Pulse: Capturing
the rhythm of cities. IEEE Transactions on Visualization and Computer
Graphics, 23(1):791–800, 2017.

[30] Zhicheng Liu and Jeffrey Heer. The effects of interactive latency on exploratory
visual analysis. IEEE Transactions on Visualization and Computer Graphics,
20(12):2122–2131, 2014.

[31] Fabio Miranda, Marcos Lage, Harish Doraiswamy, Charlie Mydlarz, Justin
Salamon, Yitzchak Lockerman, Juliana Freire, and Claudio T. Silva. Time
Lattice: A data structure for the interactive visual analysis of large time
series. Computer Graphics Forum, 37(3):23–35.

[32] Fabio Miranda, Lauro Lins, James T. Klosowski, and Claudio T. Silva.
Topkube: A rank-aware data cube for real-time exploration of spatiotemporal
data. IEEE Transactions on Visualization and Computer Graphics, 24(3):1394–
1407, 2018.

[33] Hongchao Fan, Alexander Zipf, Qing Fu, and Pascal Neis. Quality assessment
for building footprints data on OpenStreetMap. International Journal of
Geographical Information Science, 28(4):700–719, 2014.

[34] Barron Christopher, Neis Pascal, and Zipf Alexander. A comprehensive
framework for intrinsic OpenStreetMap quality analysis. Transactions in GIS,
18(6):877–895.

[35] Michael F. Goodchild and Linna Li. Assuring the quality of volunteered
geographic information. Spatial Statistics, 1:110–120, 2012.

[36] Fabio Miranda, Harish Doraiswamy, Marcos Lage, Luc Wilson, Mondrian
Hsieh, and Cláudio T. Silva. Shadow accrual maps: Efficient accumulation
of city-scale shadows over time. IEEE Transactions on Visualization and
Computer Graphics, 2018.

[37] Arline L. Bronzaft and Louis Hagler. Noise: The Invisible Pollutant that
Cannot Be Ignored, pages 75–96. Springer Netherlands, 2010.

128
[38] City of New York. New York City Local Law No. 113. Available: http:

//www.nyc.gov/html/dep/pdf/law05113.pdf. Accessed on: Jan. 31, 2018.

[39] City of Portland. City Code, Title 18: Noise Control. Available: https:
//www.portlandoregon.gov/citycode/?c=28182. Accessed on: Jan. 31,
2018.

[40] Charlie Mydlarz, Justin Salamon, and Juan Pablo Bello. The implementation
of low-cost urban acoustic monitoring devices. Applied Acoustics, 117:207–218,
2017.

[41] Charlie Mydlarz, Charles Shamoon, and Juan Pablo Bello. Noise monitoring
and enforcement in New York City using a remote acoustic sensor network.
In Proceedings of INTER-NOISE and NOISE-CON, pages 5509–5520, 2017.

[42] SONYC: Sounds of New York City. Available: https://wp.nyu.edu/sonyc/.
Accessed on: Jan. 31, 2018.

[43] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang,
Justin Meza, and Kaushik Veeraraghavan. Gorilla: A fast, scalable, in-memory
time series database. Proceedings of the VLDB Endowment, 8(12):1816–1827,
2015.

[44] Andreas Bader, Oliver Kopp, and Michael Falkenthal. Survey and compar-
ison of open source time series databases. Datenbanksysteme für Business,
Technologie und Web (BTW 2017)-Workshopband, page 266.

[45] InfluxDB. Available: https://github.com/influxdata/influxdb. Ac-
cessed on: Jan. 31, 2018.

[46] KairosDB. Available: https://kairosdb.github.io/. Accessed on: Jan.
31, 2018.

[47] Lauro Lins, James T. Klosowski, and Carlos Scheidegger. Nanocubes for
real-time exploration of spatiotemporal datasets. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2456–2465, 2013.

http://www.nyc.gov/html/dep/pdf/law05113.pdf
http://www.nyc.gov/html/dep/pdf/law05113.pdf
https://www.portlandoregon.gov/citycode/?c=28182
https://www.portlandoregon.gov/citycode/?c=28182
https://wp.nyu.edu/sonyc/
https://github.com/influxdata/influxdb
https://kairosdb.github.io/

129
[48] Ćıcero A. L. Pahins, Sean A. Stephens, Carlos Scheidegger, and João L. D.

Comba. Hashedcubes: Simple, low memory, real-time visual exploration
of big data. IEEE Transactions on Visualization and Computer Graphics,
23(1):671–680, 2017.

[49] Maheshkumar Sabhnani, Andrew W. Moore, and Artur W. Dubrawski. T-
cube: A data structure for fast extraction of time series from large datasets.
Technical report, DTIC Document, 2007.

[50] Luca Deri, Simone Mainardi, and Francesco Fusco. tsdb: A compressed
database for time series. Traffic Monitoring and Analysis, pages 143–156,
2012.

[51] Maxim Buevich, Anne Wright, Randy Sargent, and Anthony Rowe. Respawn:
A distributed multi-resolution time-series datastore. In Proceedings of the
2013 IEEE 34th Real-Time Systems Symposium, pages 288–297, 2013.

[52] TimescaleDB. Available: https://timescale.com/. Accessed on: Jan. 31,
2018.

[53] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. Time
series management systems: A survey. IEEE Transactions on Knowledge and
Data Engineering, 29(11):2581–2600, 2017.

[54] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Re-
ichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube:
A relational aggregation operator generalizing group-by, cross-tab, and sub-
totals. Data Mining and Knowledge Discovery, 1(1):29–53, 1997.

[55] Chen Chen, Xifeng Yan, Feida Zhu, Jiawei Han, and S Yu Philip. Graph
OLAP: Towards online analytical processing on graphs. In Proceedings of the
2008 IEEE International Conference on Data Mining, pages 103–112, 2008.

[56] Cindy Xide Lin, Bolin Ding, Jiawei Han, Feida Zhu, and Bo Zhao. Text
cube: Computing ir measures for multidimensional text database analysis.
In Proceedings of the 2008 IEEE International Conference on Data Mining,
pages 905–910, 2008.

https://timescale.com/

130
[57] Kevin Beyer and Raghu Ramakrishnan. Bottom-up computation of sparse

and iceberg cube. In Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pages 359–370, 1999.

[58] Jiawei Han, Yixin Chen, Guozhu Dong, Jian Pei, Benjamin W Wah, Jianyong
Wang, and Y Dora Cai. Stream cube: An architecture for multi-dimensional
analysis of data streams. Distributed and Parallel Databases, 18(2):173–197,
2005.

[59] Qiyang Duan, Peng Wang, MingXi Wu, Wei Wang, and Sheng Huang. Ap-
proximate query on historical stream data. In Database and Expert Systems
Applications, pages 128–135. Springer, 2011.

[60] Jian Zhao, Fanny Chevalier, Emmanuel Pietriga, and Ravin Balakrishnan.
Exploratory analysis of time-series with ChronoLenses. IEEE Transactions
on Visualization and Computer Graphics, 17(12):2422–2431, 2011.

[61] Jarke J. Van Wijk and Edward R. Van Selow. Cluster and calendar based
visualization of time series data. In Proceedings of the 1999 IEEE Symposium
on Information Visualization (InfoVis), pages 4–9, 1999.

[62] Peter McLachlan, Tamara Munzner, Eleftherios Koutsofios, and Stephen
North. LiveRAC: Interactive visual exploration of system management time-
series data. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1483–1492, 2008.

[63] Waqas Javed, Bryan McDonnel, and Niklas Elmqvist. Graphical perception
of multiple time series. IEEE Transactions on Visualization and Computer
Graphics, 16(6):927–934, 2010.

[64] Sônia Fernandes Silva and Tiziana Catarci. Visualization of linear time-
oriented data: a survey. In Proceedings of the First International Conference
on Web Information Systems Engineering, pages 310–319, 2000.

[65] Wolfgang Müller and Heidrun Schumann. Visualization for modeling and
simulation: visualization methods for time-dependent data-an overview. In
Proceedings of the 35th Conference on Winter Simulation: Driving Innovation,
pages 737–745, 2003.

131
[66] Wolfgang Aigner, Silvia Miksch, Wolfgang Müller, Heidrun Schumann, and

Christian Tominski. Visualizing time-oriented data - a systematic view.
Computers and Graphics, 31(3):401–409, 2007.

[67] Lior Berry and Tamara Munzner. BinX: Dynamic exploration of time series
datasets across aggregation levels. In Proceedings of the 2004 IEEE Symposium
on Information Visualization (InfoVis), 2004.

[68] Ming C. Hao, Umeshwar Dayal, Daniel A. Keim, and Tobias Schreck. Multi-
resolution techniques for visual exploration of large time-series data. In
Proceedings of the 9th Joint Eurographics / IEEE VGTC Conference on
Visualization, pages 27–34, 2007.

[69] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and Volker Markl. M4: a
visualization-oriented time series data aggregation. Proceedings of the VLDB
Endowment, 7(10):797–808, 2014.

[70] Prithiviraj K. Muthumanickam, Katerina Vrotsou, Matthew Cooper, and
Jimmy Johansson. Shape grammar extraction for efficient query-by-sketch
pattern matching in long time series. In Proceedings of the 2016 IEEE
Conference on Visual Analytics Science and Technology (VAST), pages 121–
130, 2016.

[71] Michael Correll and Michael Gleicher. The semantics of sketch: Flexibility
in visual query systems for time series data. In Proceedings of the 2016
IEEE Conference on Visual Analytics Science and Technology (VAST), pages
131–140, 2016.

[72] Harry Hochheiser and Ben Shneiderman. Dynamic query tools for time
series data sets: timebox widgets for interactive exploration. Information
Visualization, 3(1):1–18, 2004.

[73] Zhe Wang, Nivan Ferreira, Youhao Wei, Aarthy Sankari Bhaskar, and Carlos
Scheidegger. Gaussian Cubes: Real-time modeling for visual exploration of
large multidimensional datasets. IEEE Transactions on Visualization and
Computer Graphics, 23(1):681–690, 2017.

132
[74] Ted Dunning and Otmar Ertl. Computing extremely accurate quantiles us-

ing t-digests. Available: https://github.com/tdunning/t-digest/, 2014.
Accessed on: Jan. 31, 2018.

[75] Wes McKinney. Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython. O’Reilly, 2013.

[76] Nick Hornby. High Fidelity. Penguin UK, 2000.

[77] Barry J. Faulk. Love and lists in Nick Hornby’s High Fidelity. Cultural
Critique, 66(1):153–176, 2007.

[78] Todd Mostak. An overview of MapD (massively parallel database). In White
paper. Massachusetts Institute of Technology, 2013.

[79] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. imMens: Real-time visual
querying of big data. Computer Graphics Forum, 32(3):421–430, 2013.

[80] Leilani Battle, Michael Stonebraker, and Remco Chang. Dynamic reduction
of query result sets for interactive visualizaton. In Proceedings of the 2013
IEEE International Conference on Big Data, pages 1–8, 2013.

[81] Jean-Francois Im, Felix Giguere Villegas, and Michael J. McGuffin. VisReduce:
Fast and responsive incremental information visualization of large datasets.
In Proceedings of the 2013 IEEE International Conference on Big Data, pages
25–32, 2013.

[82] Alan Dix and Geoff Ellis. By chance - enhancing interaction with large data
sets through statistical sampling. In Proceedings of the Working Conference
on Advanced Visual Interfaces, pages 167–176, 2002.

[83] Ben Shneiderman. Dynamic queries for visual information seeking. IEEE
Software, 11(6):70–77, 1994.

[84] Daniel B. Carr, Richard J. Littlefield, Wesley L. Nicholson, and J. S. Littlefield.
Scatterplot matrix techniques for large n. Journal of the American Statistical
Association, 82(398):424–436, 1987.

https://github.com/tdunning/t-digest/

133
[85] Peter J. Rousseeuw and Annick M. Leroy. Robust regression and outlier

detection, volume 589. John Wiley & Sons, 2005.

[86] Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi.
Distributed and interactive cube exploration. In Proceedings of the 2014
IEEE 30th International Conference on Data Engineering, pages 472–483,
2014.

[87] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: A system for query,
analysis, and visualization of multidimensional relational databases. IEEE
Transactions on Visualization and Computer Graphics, 8(1):52–65, 2002.

[88] Chris Stolte, Diane Tang, and Pat Hanrahan. Multiscale visualization using
data cubes. IEEE Transactions on Visualization and Computer Graphics,
9(2):176–187, 2003.

[89] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. Spatial keyword
query processing: an experimental evaluation. In Proceedings of the 39th
International Conference on Very Large Data Bases, pages 217–228. VLDB
Endowment, 2013.

[90] Subodh Vaid, Christopher B. Jones, Hideo Joho, and Mark Sanderson. Spatio-
textual indexing for geographical search on the web. In Proceedings of the
9th International Conference on Advances in Spatial and Temporal Databases,
pages 218–235, 2005.

[91] Ariel Cary, Ouri Wolfson, and Naphtali Rishe. Efficient and scalable method
for processing top-k spatial boolean queries. In Scientific and Statistical
Database Management, pages 87–95. Springer, 2010.

[92] João B. Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Nørv̊ag.
Efficient processing of top-k spatial keyword queries. In Advances in Spatial
and Temporal Databases, pages 205–222. Springer, 2011.

[93] Dongxiang Zhang, Kian-Lee Tan, and Anthony KH Tung. Scalable top-k
spatial keyword search. In Proceedings of the 16th International Conference
on Extending Database Technology, pages 359–370, 2013.

134
[94] Dong Xin, Jiawei Han, Hong Cheng, and Xiaolei Li. Answering top-k queries

with multi-dimensional selections: The ranking cube approach. In Proceedings
of the 32nd International Conference on Very Large Data Bases, pages 463–
474. VLDB Endowment, 2006.

[95] Tianyi Wu, Dong Xin, and Jiawei Han. Arcube: supporting ranking aggregate
queries in partially materialized data cubes. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of data, pages 79–92,
2008.

[96] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k
query processing techniques in relational database systems. ACM Computing
Surveys, 40(4):11:1–11:58, 2008.

[97] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms
for middleware. Journal of Computer and System Sciences, 66(4):614–656,
2003.

[98] Michal Shmueli-Scheuer, Chen Li, Yosi Mass, Haggai Roitman, Ralf Schenkel,
and Gerhard Weikum. Best-effort top-k query processing under budgetary
constraints. In Proceedings of the 2009 IEEE 25th International Conference
on Data Engineering, pages 928–939, 2009.

[99] Nivan Ferreira, Lauro Lins, Daniel Fink, Steve Kelling, Chris Wood, Juliana
Freire, and Claudio T. Silva. BirdVis: Visualizing and understanding bird
populations. IEEE Transactions on Visualization and Computer Graphics,
17(12):2374–2383, 2011.

[100] Jo Wood, Jason Dykes, Aidan Slingsby, and Keith Clarke. Interactive visual
exploration of a large spatio-temporal dataset: reflections on a geovisualiza-
tion mashup. IEEE Transactions on Visualization and Computer Graphics,
13(6):1176–1183, 2007.

[101] Conglei Shi, Weiwei Cui, Shixia Liu, Panpan Xu, Wei Chen, and Huamin
Qu. RankExplorer: Visualization of ranking changes in large time series data.
IEEE Transactions on Visualization and Computer Graphics, 18(12):2669–
2678, 2012.

135
[102] Samuel Gratzl, Alexander Lex, Nils Gehlenborg, Hanspeter Pfister, and Marc

Streit. Lineup: Visual analysis of multi-attribute rankings. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2277–2286, 2013.

[103] Charles Perin, Romain Vuillemot, and Jean-Daniel Fekete. A table!: Im-
proving temporal navigation in soccer ranking tables. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 887–896,
2014.

[104] Wikimedia downloads. Available: https://dumps.wikimedia.org/. Ac-
cessed on: Mar. 31, 2015.

[105] Georgios Gousios. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories, pages 233–236,
2013.

[106] NYC Department of City Planning. East midtown environmental impact state-
ment. Available: https://www1.nyc.gov/assets/planning/download/
pdf/applicants/env-review/gem/05_feis.pdf. Accessed on: Oct. 23,
2017.

[107] Prevision Design. Evaluation of new shadow generation from proposed
development at 888 Tennessee street per SF planning section 295 stan-
dards. Available: http://sfrecpark.org/wp-content/uploads/Item-5-
888-Tennessee-Attachment-D_Shadow-Study-060717-a.pdf. Accessed
on: Oct. 23, 2017.

[108] Elmar Eisemann, Michael Schwarz, Ulf Assarsson, and Michael Wimmer.
Real-Time Shadows. A.K. Peters, 2011.

[109] Andrew Woo and Pierre Poulin. Shadow Algorithms Data Miner. CRC Press,
2012.

[110] Google. Project Sunroof data explorer: a description of methodology and in-
puts. Available: https://www.google.com/get/sunroof/data-explorer/
data-explorer-methodology.pdf. Accessed on: Oct. 23, 2017.

https://dumps.wikimedia.org/
https://www1.nyc.gov/assets/planning/download/pdf/applicants/env-review/gem/05_feis.pdf
https://www1.nyc.gov/assets/planning/download/pdf/applicants/env-review/gem/05_feis.pdf
http://sfrecpark.org/wp-content/uploads/Item-5-888-Tennessee-Attachment-D_Shadow-Study-060717-a.pdf
http://sfrecpark.org/wp-content/uploads/Item-5-888-Tennessee-Attachment-D_Shadow-Study-060717-a.pdf
https://www.google.com/get/sunroof/data-explorer/data-explorer-methodology.pdf
https://www.google.com/get/sunroof/data-explorer/data-explorer-methodology.pdf

136
[111] Autodesk. Solar access with Insight Revit 2017 plugin. Available:

http://blogs.autodesk.com/insight/solar-access-with-insight-
revit-2017-plugin/. Accessed on: Oct. 23, 2017.

[112] Tassilo Glander and Jürgen Döllner. Abstract representations for interactive
visualization of virtual 3D city models. Computers, Environment and Urban
Systems, 33(5):375–387, 2009.

[113] Wei Zeng, Chi-Wing Fu, S.M. Arisona, A. Erath, and Huamin Qu. Visualizing
mobility of public transportation system. IEEE Transactions on Visualization
and Computer Graphics, 20(12):1833–1842, 2014.

[114] Zuchao Wang, Min Lu, Xiaoru Yuan, Junping Zhang, and Huub Van De We-
tering. Visual traffic jam analysis based on trajectory data. IEEE Transactions
on Visualization and Computer Graphics, 19(12):2159–2168, 2013.

[115] Gennady Andrienko and Natalia Andrienko. Spatio-temporal aggregation for
visual analysis of movements. In Proceedings of the 2008 IEEE Conference
on Visual Analytics Science and Technology (VAST), pages 51–58, 2008.

[116] Abdullah Kurkcu, Fabio Miranda, Kaan Ozbay, and Claudio T. Silva. Data
visualization tool for monitoring transit operation and performance. In
Proceedings of the 2017 IEEE 5th International Conference on Models and
Technologies for Intelligent Transportation Systems (MT-ITS), pages 598–603,
2017.

[117] Huamin Qu, Wing-Yi Chan, Anbang Xu, Kai-Lun Chung, Kai-Hon Lau, and
Ping Guo. Visual analysis of the air pollution problem in Hong Kong. IEEE
Transactions on Visualization and Computer Graphics, 13(6):1408–1415, 2007.

[118] Tuan-Anh Hoang-Vu, Vicki Been, Ingrid Gould Ellen, Max Weselcouch, and
Juliana Freire. Towards understanding real-estate ownership in New York
City: Opportunities and challenges. In Proceedings of the International
Workshop on Data Science for Macro-Modeling, pages 1–2, 2014.

[119] GuoDao Sun, RongHua Liang, FuLi Wu, and HuaMin Qu. A web-based visual
analytics system for real estate data. Science China Information Sciences,
56(5):1–13, 2013.

http://blogs.autodesk.com/insight/solar-access-with-insight-revit-2017-plugin/
http://blogs.autodesk.com/insight/solar-access-with-insight-revit-2017-plugin/

137
[120] Jiawan Zhang, E Yanli, Jing Ma, Yahui Zhao, Binghan Xu, Liting Sun, Jinyan

Chen, and Xiaoru Yuan. Visual analysis of public utility service problems in
a metropolis. IEEE Transactions on Visualization and Computer Graphics,
20(12):1843–1852, 2014.

[121] Yixian Zheng, Wenchao Wu, Yuanzhe Chen, Huamin Qu, and Lionel M. Ni.
Visual analytics in urban computing: An overview. IEEE Transactions on
Big Data, 2(3):276–296, 2016.

[122] PlaceILive. PlaceILive.com. Available: http://placeilive.com/. Accessed
on: Oct. 23, 2017.

[123] Transitmix. Transitmix. Available: http://www.transitmix.net/. Accessed
on: Oct. 23, 2017.

[124] Flux. Flux data sharing platform for building construction and design.
Available: http://flux.io/. Accessed on: Oct. 23, 2017.

[125] UrbanSim Inc. ViziCities. Available: http://vizicities.com/. Accessed
on: Oct. 23, 2017.

[126] Kevin Johnston, Jay M Ver Hoef, Konstantin Krivoruchko, and Neil Lucas.
Using ArcGIS geostatistical analyst. ESRI, 2001.

[127] Thomas Ortner, Johannes Sorger, Harald Steinlechner, Gerd Hesina, Harald
Piringer, and Eduard Gröller. Vis-A-Ware: Integrating spatial and non-
spatial visualization for visibility-aware urban planning. IEEE Transactions
on Visualization and Computer Graphics, 23(2):1139–1151, 2017.

[128] Ralph L. Knowles. Energy and Form; an Ecological Approach to Urban
Growth. MIT Press, 1974.

[129] Ralph L. Knowles. Sun Rhythm Form. MIT Press, 1981.

[130] Ralph L. Knowles. The solar envelope: its meaning for energy and buildings.
Energy and Buildings, 35(1):15–25, 2003.

http://placeilive.com/
http://www.transitmix.net/
http://flux.io/
http://vizicities.com/

138
[131] Paul Littlefair. Passive solar urban design: ensuring the penetration of solar

energy into the city. Renewable and Sustainable Energy Reviews, 2(3):303–326,
1998.

[132] Paul Littlefair. Daylight, sunlight and solar gain in the urban environment.
Solar Energy, 70(3):177–185, 2001.

[133] Isaac G. Capeluto and E. Shaviv. On the use of solar volume for determining
the urban fabric. Solar Energy, 70(3):275–280, 2001.

[134] Raphaël Compagnon. Solar and daylight availability in the urban fabric.
Energy and buildings, 36(4):321–328, 2004.

[135] Jérôme Henri Kämpf, Marylène Montavon, Josep Bunyesc, Raffaele Bolliger,
and Darren Robinson. Optimisation of buildings’ solar irradiation availability.
Solar Energy, 84(4):596–603, 2010.

[136] Paul Richens. Image processing for urban scale environmental modelling. In
Proceedings of the 5th International IBPSA Conference: Building Simulation
97, pages 163–171, 1997.

[137] Carlo Ratti and Paul Richens. Urban texture analysis with image process-
ing techniques. In Proceedings of the Eighth International Conference on
Computer Aided Architectural Design Futures, pages 49–64, 1999.

[138] Carlo Ratti and Paul Richens. Raster analysis of urban form. Environment
and Planning B: Planning and Design, 31(2):297–309, 2004.

[139] Fredrik Lindberg. Towards the use of local governmental 3-d data within
urban climatology studies. Mapping Image Science, 2:32–37, 2005.

[140] Fredrik Lindberg, Björn Holmer, and Sofia Thorsson. SOLWEIG 1.0–
modelling spatial variations of 3D radiant fluxes and mean radiant tem-
perature in complex urban settings. International Journal of Biometeorology,
52(7):697–713, 2008.

139
[141] Fredrik Lindberg and C. S. B. Grimmond. The influence of vegetation and

building morphology on shadow patterns and mean radiant temperatures in
urban areas: model development and evaluation. Theoretical and Applied
Climatology, 105(3-4):311–323, 2011.

[142] Fredrik Lindberg, Per Jonsson, Tsuyoshi Honjo, and Dag Wästberg. Solar
energy on building envelopes–3D modelling in a 2D environment. Solar
Energy, 115:369–378, 2015.

[143] S. Freitas, C. Catita, P. Redweik, and M.C. Brito. Modelling solar potential
in the urban environment: State-of-the-art review. Renewable and Sustainable
Energy Reviews, 41:915 – 931, 2015.

[144] C. Catita, P. Redweik, J. Pereira, and M.C. Brito. Extending solar potential
analysis in buildings to vertical facades. Computers & Geosciences, 66(C):1–
12, 2014.

[145] Gunther H. Weber, Hans Johansen, Daniel T. Graves, and Terry J. Ligocki.
Simulating urban environments for energy analysis. In Proceedings of the
2014 Workshop on Visualisation in Environmental Sciences (EnvirVis), 2014.

[146] J. Alstan Jakubiec and Christoph F. Reinhart. A method for predicting
city-wide electricity gains from photovoltaic panels based on LiDAR and GIS
data combined with hourly daysim simulations. Solar Energy, 93:127 – 143,
2013.

[147] Fan Zhang, Hanqiu Sun, Leilei Xu, and Lee Kit Lun. Parallel-split shadow
maps for large-scale virtual environments. In Proceedings of the 2006 ACM
International Conference on Virtual Reality Continuum and Its Applications,
pages 311–318, 2006.

[148] D. Brandon Lloyd, David Tuft, Sung-eui Yoon, and Dinesh Manocha. Warping
and partitioning for low error shadow maps. In Proceedings of the 17th
Eurographics Conference on Rendering Techniques, pages 215–226, 2006.

[149] Erik Sintorn, Viktor Kämpe, Ola Olsson, and Ulf Assarsson. Compact
precomputed voxelized shadows. ACM Transactions on Graphics, 33(4):150:1–
150:8, 2014.

140
[150] Viktor Kämpe, Erik Sintorn, Dan Dolonius, and Ulf Assarsson. Fast, memory-

efficient construction of voxelized shadows. IEEE Transactions on Visualiza-
tion and Computer Graphics, 22(10):2239–2248, 2016.

[151] Marc Stamminger and George Drettakis. Perspective shadow maps. ACM
Transactions on Graphics, 21(3):557–562, 2002.

[152] Michael Wimmer, Daniel Scherzer, and Werner Purgathofer. Light space
perspective shadow maps. In Proceedings of the 15th Eurographics Conference
on Rendering Techniques, pages 143–151, 2004.

[153] Erik Sintorn, Elmar Eisemann, and Ulf Assarsson. Sample based visibility
for soft shadows using alias-free shadow maps. In Proceedings of the 19th
Eurographics Conference on Rendering, pages 1285–1292, 2008.

[154] Tom Lokovic and Eric Veach. Deep shadow maps. In Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive Techniques, pages
385–392, 2000.

[155] Daniel Scherzer, Michael Wimmer, and Werner Purgathofer. A survey of real-
time hard shadow mapping methods. Computer Graphics Forum, 30(1):169–
186, 2011.

[156] Hoshang Kolivand and Mohd Shahrizal Sunar. Survey of shadow volume
algorithms in computer graphics. IETE Technical Review, 30(1):38–46, 2013.

[157] Erik Sintorn, Viktor Kämpe, Ola Olsson, and Ulf Assarsson. Per-triangle
shadow volumes using a view-sample cluster hierarchy. In Proceedings of the
18th Meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games, pages 111–118, 2014.

[158] Peter Djeu, Sean Keely, and Warren Hunt. Accelerating shadow rays using
volumetric occluders and modified kd-tree traversal. In Proceedings of the
2009 Conference on High Performance Graphics, pages 69–76, 2009.

[159] Javor Kalojanov, Markus Billeter, and Philipp Slusallek. Two-level grids for
ray tracing on GPUs. Computer Graphics Forum, 30(2):307–314, 2011.

141
[160] Nicolas Feltman, Minjae Lee, and Kayvon Fatahalian. SRDH: Specializing

BVH construction and traversal order using representative shadow ray sets.
In Proceedings of the 2012 Conference on High Performance Graphics, pages
49–55, 2012.

[161] Jae-Ho Nah and Dinesh Manocha. SATO: Surface area traversal order for
shadow ray tracing. Computer Graphics Forum, 33(6):167–177, 2014.

[162] Elmar Eisemann and Xavier Décoret. Visibility sampling on GPU and
applications. Computer Graphcis Forum, 26(3):535–544, 2007.

[163] Randima Fernando. GPU Gems: Programming Techniques, Tips and Tricks
for Real-Time Graphics. Pearson Higher Education, 2004.

[164] Wolfgang Heidrich, Stefan Brabec, and Hans-Peter Seidel. Soft Shadow Maps
for Linear Lights, pages 269–280. 2000.

[165] Lance Williams. Casting curved shadows on curved surfaces. In Proceedings of
the 5th Annual Conference on Computer Graphics and Interactive Techniques,
pages 270–274, 1978.

[166] Tobias Martin and Tiow-Seng Tan. Anti-aliasing and continuity with trape-
zoidal shadow maps. In Proceedings of the 15th Eurographics Conference on
Rendering Techniques, pages 153–160, 2004.

[167] Renee Cafaro, David Diamond, Joe Ferrara, and Layla Law-Gisiko. Cen-
tral Park sunshine task force report. Available: http://www.cb5.org/cb5/
projects/central-park-sunshine-task-force_1/. Accessed on: Oct. 23,
2017.

[168] Municipal Art Society of NY. Accidental skyline. Available: http://www.
mas.org/ourwork/accidental-skyline/. Accessed on: Oct. 23, 2017.

[169] Thomas J. Lueck. Hundreds rally against towers at Coliseum site. New York
Times, October 19, 1987. Available: http://www.nytimes.com/1987/10/19/
nyregion/hundreds-rally-against-towers-at-coliseum-site.html.
Accessed on: Oct. 23, 2017.

http://www.cb5.org/cb5/projects/central-park-sunshine-task-force_1/
http://www.cb5.org/cb5/projects/central-park-sunshine-task-force_1/
http://www.mas.org/ourwork/accidental-skyline/
http://www.mas.org/ourwork/accidental-skyline/
http://www.nytimes.com/1987/10/19/nyregion/hundreds-rally-against-towers-at-coliseum-site.html
http://www.nytimes.com/1987/10/19/nyregion/hundreds-rally-against-towers-at-coliseum-site.html

142
[170] NYC MOEC. City environmental quality review: Technical manual. Avail-

able: http://www1.nyc.gov/site/oec/environmental-quality-review/
technical-manual.page. Accessed on: Oct. 23, 2017.

[171] Quoctrung Bui and Jeremy White. Mapping the shadows of New York
City: Every building, every block. New York Times, December 21, 2016.
Available: http://www.nytimes.com/interactive/2016/12/21/upshot/
Mapping-the-Shadows-of-New-York-City.html. Accessed on: Oct. 23,
2017.

[172] Dragomir Anguelov, Carole Dulong, Daniel Filip, Christian Frueh, Stéphane
Lafon, Richard Lyon, Abhijit Ogale, Luc Vincent, and Josh Weaver. Google
Street View: Capturing the world at street level. Computer, 43(6):32–38,
2010.

[173] Aaron Shapiro. Street-level: Google street view’s abstraction by datafication.
New Media & Society, 2017.

[174] Nikhil Naik, Jade Philipoom, Ramesh Raskar, and César Hidalgo. Streetscore-
predicting the perceived safety of one million streetscapes. In Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 779–785, 2014.

[175] Sean M. Arietta, Alexei A. Efros, Ravi Ramamoorthi, and Maneesh Agrawala.
City forensics: Using visual elements to predict non-visual city attributes.
IEEE Transactions on Visualization and Computer Graphics, 20(12):2624–
2633, 2014.

[176] Jane Jacobs. The death and life of great american cities. 1961.

[177] Yong Rui, Thomas S. Huang, and Shih-Fu Chang. Image retrieval: Cur-
rent techniques, promising directions, and open issues. Journal of Visual
Communication and Image Representation, 10(1):39–62, 1999.

[178] Christian Wengert, Matthijs Douze, and Hervé Jégou. Bag-of-colors for im-
proved image search. In Proceedings of the 19th ACM International Conference
on Multimedia, pages 1437–1440, 2011.

http://www1.nyc.gov/site/oec/environmental-quality-review/technical-manual.page
http://www1.nyc.gov/site/oec/environmental-quality-review/technical-manual.page
http://www.nytimes.com/interactive/2016/12/21/upshot/Mapping-the-Shadows-of-New-York-City.html
http://www.nytimes.com/interactive/2016/12/21/upshot/Mapping-the-Shadows-of-New-York-City.html

143
[179] Xiang-Yang Wang, Bei-Bei Zhang, and Hong-Ying Yang. Content-based

image retrieval by integrating color and texture features. Multimedia Tools
and Applications, 68(3):545–569, 2014.

[180] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carls-
son. Cnn features off-the-shelf: an astounding baseline for recognition. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 806–813, 2014.

[181] Ming-Ming Cheng, Ziming Zhang, Wen-Yan Lin, and Philip Torr. BING:
Binarized normed gradients for objectness estimation at 300fps. In 2014
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3286–3293, 2014.

[182] Liang Zheng, Shengjin Wang, Lu Tian, Fei He, Ziqiong Liu, and Qi Tian.
Query-adaptive late fusion for image search and person re-identification. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1741–1750, 2015.

[183] Wengang Zhou, Houqiang Li, and Qi Tian. Recent advance in content-based
image retrieval: A literature survey. arXiv preprint arXiv:1706.06064, 2017.

[184] Sergio Ilarri, Eduardo Mena, and Arantza Illarramendi. Location-dependent
query processing: Where we are and where we are heading. ACM Computing
Surveys, 42(3):12:1–12:73, 2010.

[185] Harish Doraiswamy, Eleni Tzirita Zacharatou, Fabio Miranda, Marcos Lage,
Anastasia Ailamaki, Cláudio T. Silva, and Juliana Freire. Interactive visual
exploration of spatio-temporal urban data sets using urbane. In Proceedings of
the 2018 International Conference on Management of Data, pages 1693–1696,
2018.

[186] Eleni Tzirita Zacharatou, Harish Doraiswamy, Anastasia Ailamaki, Cláudio T.
Silva, and Juliana Freiref. GPU rasterization for real-time spatial aggregation
over arbitrary polygons. Proceedings of the VLDB Endowment, 11(3):352–365,
2017.

144
[187] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B. Goldman.

Patchmatch: A randomized correspondence algorithm for structural image
editing. ACM Transactions on Graphics, 28(3):24, 2009.

[188] Christine Guillemot and Olivier Le Meur. Image inpainting : Overview and
recent advances. IEEE Signal Processing Magazine, 31(1):127–144, 2014.

[189] Zhe Zhu, Hao-Zhi Huang, Zhi-Peng Tan, Kun Xu, and Shi-Min Hu. Faithful
completion of images of scenic landmarks using internet images. IEEE
Transactions on Visualization and Computer Graphics, 22(8):1945–1958, 2016.

[190] Jakub Fǐser, Ondřej Jamrǐska, Michal Lukáč, Eli Shechtman, Paul Asente,
Jingwan Lu, and Daniel Sýkora. Stylit: Illumination-guided example-based
stylization of 3d renderings. ACM Transactions on Graphics, 35(4):92:1–92:11,
2016.

[191] Connelly Barnes and Fang-Lue Zhang. A survey of the state-of-the-art in
patch-based synthesis. Computational Visual Media, 3(1):3–20, 2017.

[192] StreetSide: Dynamic Street-Level Imagery via Bing Maps. Available:
https://www.microsoft.com/en-us/maps/streetside. Accessed on: Aug.
10, 2018.

[193] Andrew G. Rundle, Michael D.M. Bader, Catherine A. Richards, Kathryn M.
Neckerman, and Julien O. Teitler. Using Google Street View to audit neighbor-
hood environments. American Journal of Preventive Medicine, 40(1):94–100,
2011.

[194] Xiaojiang Li, Chuanrong Zhang, Weidong Li, Robert Ricard, Qingyan Meng,
and Weixing Zhang. Assessing street-level urban greenery using google street
view and a modified green view index. Urban Forestry & Urban Greening,
14(3):675–685, 2015.

[195] Nikhil Naik, Scott Duke Kominers, Ramesh Raskar, Edward L. Glaeser, and
César A. Hidalgo. Computer vision uncovers predictors of physical urban
change. Proceedings of the National Academy of Sciences, 114(29):7571–7576,
2017.

https://www.microsoft.com/en-us/maps/streetside

145
[196] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, and Alexei A

Efros. What makes paris look like paris? Communications of the ACM,
58(12):103–110, 2015.

[197] Roberto Carrasco-Hernandez, Andrew R. D. Smedley, and Ann R. Webb.
Using urban canyon geometries obtained from Google Street View for atmo-
spheric studies: Potential applications in the calculation of street level total
shortwave irradiances. Energy and Buildings, 86:340–348, 2015.

[198] Yonglin Zhang and Rencai Dong. Impacts of street-visible greenery on housing
prices: Evidence from a hedonic price model and a massive street view image
dataset in beijing. ISPRS International Journal of Geo-Information, 7(3),
2018.

[199] Kotaro Hara, Jin Sun, Robert Moore, David Jacobs, and Jon Froehlich.
Tohme: detecting curb ramps in Google Street View using crowdsourcing,
computer vision, and machine learning. In Proceedings of the 27th annual
ACM Symposium on User Interface Software and Technology, pages 189–204.
ACM, 2014.

[200] Vahid Balali, Armin Ashouri Rad, and Mani Golparvar-Fard. Detection,
classification, and mapping of us traffic signs using google street view images
for roadway inventory management. Visualization in Engineering, 3(1):15,
2015.

[201] Christian Lander, Frederik Wiehr, Nico Herbig, Antonio Krüger, and Markus
Löchtefeld. Inferring landmarks for pedestrian navigation from mobile eye-
tracking data and Google Street View. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing Systems,
pages 2721–2729, 2017.

[202] Qiaomu Shen, Wei Zeng, Yu Ye, Stefan Müller Arisona, Simon Schubiger,
Remo Burkhard, and Huamin Qu. Streetvizor: Visual exploration of human-
scale urban forms based on street views. IEEE Transactions on Visualization
and Computer Graphics, 24(1):1004–1013, 2018.

146
[203] Ken Sakurada, Daiki Tetsuka, and Takayuki Okatani. Temporal city modeling

using street level imagery. Computer Vision and Image Understanding, 157:55–
71, 2017.

[204] City of New York. 311. Available: https://www1.nyc.gov/311/. Accessed
on: Oct. 23, 2017.

[205] Johannes Kopf, Billy Chen, Richard Szeliski, and Michael Cohen. Street Slide:
browsing street level imagery. In ACM Transactions on Graphics, volume 29,
pages 96:1–96:8, 2010.

[206] Carlos A. Vanegas, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes,
and Paul Waddell. Inverse design of urban procedural models. ACM Trans-
actions on Graphics, 31(6):168, 2012.

[207] Harish Doraiswamy, Nivan Ferreira, Marcos Lage, Huy Vo, Luc Wilson,
Heidi Werner, Muchan Park, and Cláudio Silva. Topology-based catalogue
exploration framework for identifying view-enhanced tower designs. ACM
Transactions on Graphics, 34(6):230, 2015.

https://www1.nyc.gov/311/

	Vita
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Contributions
	Outline

	Temporal Data: Interactive Visual Analysis of Large Time Series
	Related Work
	Time Lattice
	Data Structure
	Querying
	Extensions

	Noise Profiler
	Sound Measurement Data
	Desiderata
	Visual Interface
	Query Backend

	Experimental Evaluation
	Experimental Setup
	Scalability
	Comparison with State of the Art

	Case Studies
	Exploring Noise Patterns via Grouping
	Feedback

	Discussion

	Spatiotemporal Data: Real-Time Ranking of Geotagged Keywords
	Related Work
	Motivation
	Generality vs. Speed

	Multi-Dimensional Binning Model
	Measure on a multi-dimensional binning model
	Nanocubes

	TopKube
	Top-K from Ranked Lists
	Sweep Algorithm
	Threshold Algorithm
	Hybrid Algorithm

	Experimental Results
	Performance

	Case Studies
	TopKube-Benchmark
	Benchmark Characteristics
	Benchmark Performance
	Speedup Relative to k
	Speedup Relative to Keys
	Speedup Relative to Ranks

	Discussion

	City Geometry Data: Efficient Accumulation of City-Scale Shadows Over Time
	Related Work
	Temporal Shadows
	Shadow Accumulation
	Properties of Temporal Shadows

	Shadow Accrual Maps
	Inverse Accrual Maps
	Handling Large Time Intervals
	Shadow Profiler
	Visualization Interface
	Analysis Measures

	Implementation and Experiments
	Implementation
	Experiments

	Case Studies
	Impact of Buildings on Central Park
	Citywide Shade Vs. Shadow

	Discussion

	Image Data: Exploring the Myriad Visuals of a City
	Related Work
	Street-level Images
	Visuals of a City
	Joining Images and Urban Data
	Image Matching

	Image Explorer
	Desiderata
	Visual Interface
	Query Backend

	Case Studies
	Shadow Impact
	Noise Complaints
	Development of a City Block

	Discussion

	Conclusions and Future Work
	Appendix Additional Shadow Map Experiments

