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Abstract

Predicting commuting flows based on infrastructure and land-
use information is critical for urban planning and public pol-
icy development. However, it is a challenging task given the
complex patterns of commuting flows. Conventional mod-
els, such as gravity model, are mainly derived from physics
principles and limited by their predictive power in real-world
scenarios where many factors need to be considered. Mean-
while, most existing machine learning-based methods ignore
the spatial correlations and fail to model the influence of
nearby regions. To address these issues, we propose Geo-
contextual Multitask Embedding Learner (GMEL), a model
that captures the spatial correlations from geographic contex-
tual information for commuting flow prediction. Specifically,
we first construct a geo-adjacency network containing the ge-
ographic contextual information. Then, an attention mecha-
nism is proposed based on the framework of graph attention
network (GAT) to capture the spatial correlations and encode
geographic contextual information to embedding space. Two
separate GATSs are used to model supply and demand char-
acteristics. A multitask learning framework is used to intro-
duce stronger restrictions and enhance the effectiveness of the
embedding representation. Finally, a gradient boosting ma-
chine is trained based on the learned embeddings to predict
commuting flows. We evaluate our model using real-world
datasets from New York City and the experimental results
demonstrate the effectiveness of our proposal against the state
of the art.

Introduction

The commute of people from home to work is a phe-
nomenon that has shaped society and cities throughout the
ages, from ancient Egypt to modern New York City (Bram
and McKay 2005; Austin 2017). These daily recurrent
movements form a complex network that is highly correlated
with the socioeconomic factors of cities (Simini et al. 2012;
Spadon et al. 2019). Access to public services, open spaces,
transportation and even entertainment all play a role that in-
fluence where a worker will live, or where a company will
station its offices.

In order to have more efficiently planned cities, it is cru-
cial to understand how commuting flows are impacted by
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Figure 1: Overview. (a) Example of the commuting flow net-
work of New York City in 2015. Yellow indicates origin
census geographic units, and red indicates destination units.
(b) Illustration of the commuting flow prediction problem
when residents choose where to work based on supporting
infrastructure, distance, etc. (c) Illustration of our solution
that uses geographic contextual information for commuting
flow prediction.

infrastructure and land use. This information can be used in
urban planning to guide the development of new districts,
or in transportation planning to direct the deployment of
new modes of transport. Consider for instance the exam-
ple of Manhattan, a dense borough of New York City. Be-
cause of its historical concentration of transit hubs and ma-
jor corporations, it is the principal destination for workers



from the outer boroughs of the city (see Fig. 1a). Redevel-
opment and rezoning initiatives, however, have contributed
to the increase in the number of jobs located in Brooklyn
and Queens (Office of the State Deputy Comptroller for the
City of New York 2019). Understanding the commuting flow
can then help answer many what-if questions in the plan-
ning stage, such as “If a new high-tech industrial park is
planned for a region in Brooklyn, from which regions would
people commute to work? How should we plan the support-
ing infrastructure to improve the commuting efficiency?”,
which could help urban planners, policy makers and differ-
ent stakeholders to make informed decisions.

As such, commuting flow prediction is one of the funda-
mental problems for urban planning in that it reveals the spa-
tial interactions of supply and demand in a city (Rodrigue,
Comtois, and Slack 2016). The problem differs from spatio-
temporal traffic origin-destination (OD) forecasting prob-
lem. Traffic OD forecasting is essentially a time series pre-
diction problem where the historical movements will be used
as input features, while commuting flow prediction problem
aims at revealing spatial interaction of supply and demand in
a city by predicting the edge-level signals (e.g. the volume
of the flow), using only the information of node attributes,
such as infrastructure and land use information (see Fig. 1b).
Since commuting behaviour shows a daily repeated static
pattern, this property enables us to develop a connection be-
tween commute and urban indicators.

Although the problem has a long history that goes back to
the eighteenth century (Monge 1781), it remains challeng-
ing because of the inherent complexity of cities. Past pro-
posals that use gravity or radiation model (Lenormand, Bas-
solas, and Ramasco 2016; Simini et al. 2012) make simple
assumptions of the generation process of commuting flows,
and might not capture certain commute patterns. Recently
proposed machine learning-based models, such as gradient
boosting machine (Pourebrahim et al. 2019), on the other
hand, only consider the features of origin-destination, ignor-
ing the influence of nearby regions.

To address the above issues, we propose a model called
Geo-Contextual Multitask Embedding Learner (GMEL) to
predict commuting flows. First, we construct a geographic
adjacency network that represents the geographic relation-
ship between regions (Fig. 1c). Then, inspired by Tobler’s
first law of geography (Tobler 1970) which states that ev-
erything is related to everything else, but nearby things are
more related than distant things, we employ Graph Atten-
tion Network (GAT) to encode the geographic contextual in-
formation into an embedding space. Since commuting flow
can be viewed as a kind of spatial interaction between ori-
gin supply and destination demand (Rodrigue, Comtois, and
Slack 2016), we employ two separate GATs to encode the
geographic contextual information into two different embed-
ding spaces. This allows us to disentangle the supply and de-
mand characteristics that are hidden in the infrastructure and
land use features. To ensure the effectiveness of the embed-
dings representation, multitask objective functions is used to
introduce stronger restrictions forcing the embeddings to en-
capsulate effective representation for flow prediction (Caru-
ana 1997). Finally, we train a gradient boosting machine re-

gression model using the embeddings generated by GMEL
as input features.
The primary contributions of this paper are the following:

e We propose the use of geographic contextual information
for commuting flow prediction problem. To our knowl-
edge, we are the first to exploit geographic contextual in-
formation in this task.

e We propose a model (GMEL) to capture the spatial corre-
lations from geographic contextual information and en-
code the information into embedding space based on
graph attention network.

e We conduct extensive experiments using real-world
datasets from New York City. The results demonstrate the
effectiveness of our proposed method against the state of
the art.

Related Work
Commuting Flow Prediction

In this paper, we focus on commuting flow prediction prob-
lem (Spadon et al. 2019). It is important to note that the
problem formulation is different from the traffic origin-
destination (OD) forecasting problem (Xiong et al. ; Iwata
and Hitoshi 2019). Although both of the problems view hu-
man movements as networks, traffic OD forecasting prob-
lem is essentially an edge-level time series prediction prob-
lem where the historical network edges (e.g. ODs) can be
the input features of the model (Wang et al. 2019b), while
commuting flow prediction problem aims at predicting the
edge weights (e.g. the volume of the flow) utilizing only the
attribute of nodes.

Gravity model (Lenormand, Bassolas, and Ramasco
2016) is a widely used conventional model for commuting
flow prediction which makes simple assumptions of the gen-
eration process of commuting flow. For example, the origi-
nal form of gravity model (Zipf 1946) assumes the number
of commuters traveling from one region to another is pro-
portional to the product of the population of origin and des-
tination and decays with the distance of the trip, as shown
below:

. M M2
Tij = Oéoildq3 : (D
i
where M; and M are the population of region i and j respec-
tively, d;; is the travel distance between the two regions, and
{ap, a1, a9, a3} are the parameters to be estimated. How-
ever, this simple assumption might not capture the complex
nature of a city (Albeverio et al. 2007).

Recently, researchers have used nonparametric models,
such as gradient boosting machine, to capture the com-
plex nature of spatial interaction represented by commut-
ing flow (Pourebrahim et al. 2019; Robinson and Dilkina
2018). These off-the-shelf machine learning models usu-
ally present better performance than conventional physics-
derived models. However, these models simply use origin-
destination node attributes as input features to fit a regres-
sion model, ignoring the influence of nearby regions. An-
other family of conventional models is called intervening



opportunity model. These models consider the influence of
nearby potential competitors of origin or destination, such
as radiation model (Simini et al. 2012; Yang et al. 2014).
Inspired by the idea of intervening opportunity, we propose
using the geographic contextual information to develop the
regression model where the embeddings of each node is en-
coded with the influence of nearby regions.

Graph Representation Learning

Several graph representation learning methods have been
proposed recently. A general inductive framework called
GraphSAGE is proposed by (Hamilton, Ying, and Leskovec
2017), which leverages node attribute to generate node em-
beddings in a message-passing way. Also, graph attention
network (Velickovi¢ et al. 2018) leverages self-attention
mechanism to allow messages passed by neighbors to be ag-
gregated with different weights. Motivated by these works,
we use the framework of graph attention network and adapt
the attention mechanism to our tasks so that our model could
capture the geographic context.

Several applications have also been proposed based on
graph neural network. (Pan et al. 2019) utilized a GAT-
like structure to learn embeddings that capture spatial cor-
relations of traffic patterns. (Wang et al. 2019b) proposed
a GraphSAGE-like graph embedding model to capture
the spatial mobility patterns and neighboring correlations.
(Zhang et al. 2019) proposed a multitask learning framework
to simultaneously predict the node and edge traffic flows.
Few studies explored the use of graph neural network to cap-
ture spatial correlations for commuting flow predictions.

Preliminaries

In this section, we introduce the definitions and problem for-
mulation.

Definition 1 Urban Geographic Unit: We partition the
city into N urban geographic units vy, v, ..., vy. The ge-
ographic units can be street blocks, census tracts, zip code
areas, etc.

Definition 2 Urban Indicators: The urban indicator a; is
a vector that serves as the attribute of v;. It characterizes the
aggregated information of infrastructure and land use of the
geographic units.

Definition 3 Geo-Adjacency Network: The Geo-
adjacency network is an undirected weighted graph G,q; =
(V,E, A) where V. = {v1,v2,...,un} is the set of urban
geographic units which serves as the nodes of the graph,
E = {ej;|v;, vj are geographically adjacent,1 < i, < N}
is the set of edge features that describes the strength of
correlations (e.g. travel distance, trip duration) and A =
{a1,as,...,ay} is the set of urban indicators that serves as
the node attributes.

In our case, we use census tracts as the urban geographic
unit. The geo-adjacency network of New York City is shown
in Fig. 2.

Definition 4 Distance Matrix: The distance matrix D is
a N-by-NN matrix where the entry D;; represents the travel
distance from v; to v;.

Definition 5 Commuting Trips: Commuting trips are a
set of triplets T' = {(v;, vj, T;;)} where v, is the trip origin

Figure 2: Geo-adjacency network of New York City. The
dots represent the centroids of census tracts and the lines
represent the edges.

node, v; is the trip destination node, T;; is the commuting
flow, i.e. the number of commuters travel from v; to v;. Note
that 7T;; can be seen as an edge-level flow. We also define
two kinds of node-level flows, i.e. in-flow and out-flow. We
denote the out-flow as 7T;. representing the total number of
outgoing commuters from v; and denote the in-flow as T:;
representing the total number of incoming commuter to v;.

Problem: Given G,q; = (V,E, A) and D, develop a re-
gression model to predict T;; € T.

Methodologies

In this section, we describe the architecture of our model for
commuting flow prediction. Basically, our model consists
of two components: Geo-contextual Multitask Embedding
Learner and Flow Predictor.

1) Geo-contextual Multitask Embedding Learner
(GMEL). GMEL is designed to capture the spatial corre-
lations from geographic context. Basically, the geographic
context can be viewed as the graph neighborhoods of G 4;.
GMEL utilizes Graph Attention Network (GAT) to encode
the geographic contextual information into an embedding
space. To disentangle the supply and demand characteris-
tics that are hidden in infrastructure and land use, GMEL
employs two separate GATs to encode the geographic con-
textual information into two different embedding space. To
ensure the effectiveness of the embeddings representation,
GMEL employs multitask learning framework which im-
poses stronger restrictions forcing the embeddings to encap-
sulate effective representation for flow prediction (Caruana
1997).

2) Flow Predictor. Considering the learned embeddings
from GMEL, we employ gradient boosting machine (GBM)
as the regression model to predict commuting flows. GBM
has advantages in handling dense numerical features (Ke et
al. 2019), such as the learned embeddings in our scenar-
ios. By iteratively evaluating the largest information gain of
features, GBM can automatically select and combine use-
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Figure 3: Framework of GMEL

ful numerical features to fit the targets (Friedman, Hastie,
and Tibshirani 2001). This is why most recently proposed
machine learning models for commuting flow prediction
employ gradient boosting regression tree (GBRT) or ran-
dom forest as the regression function (Spadon et al. 2019;
Pourebrahim et al. 2019; Robinson and Dilkina 2018). In
particular, we use GBRT in this paper.

Framework

The framework of GMEL is shown in Fig. 3. GMEL aims
at learning effective embeddings of urban geographic units
which encode the geographic contextual information. To
learn the supply and demand characteristics for each geo-
graphic unit respectively, we employ two separate GATs to
encode this information. The generated embeddings are then
applied to a bilinear function to predict the flow. Meanwhile,
these embeddings will also be applied to two linear functions
to predict the in/out-flow of the geographic units. The overall
prediction loss is the weighted sum of the three tasks’ loss,
and we use backpropagation to train GMEL in an end-to-end
manner.

Graph Attention Network

Graph attention network (GAT) iteratively aggregates the in-
formation from node neighborhood and updates the node
states with nonlinearity. The weight used to aggregate the
neighborhood messages depends on the features of two con-
necting nodes and edge features.

Assume the state of node i is h(l) € R™*! in the I-th
layer and the features of edge (v, vj) is e;; € R™1. GAT
first applies linear transformation to these vectors.

20 =wOp 2)

3

CE;) = V(l)eij (3)

where W € RF*™ and V(1) € RY™ are trainable param-
eter matrices. The resulting z; is the message vector passed
to neighbors. Before aggregating these message vectors, an
attention score for each edge is calculated:

l l
D124 )

where o(-) is a nonlinear function (e.g. Relu, Sigmoid),
a®) € REk+Hx1 g a trainable parameter vector that maps

) = o)

the concatenation of messages into a scalar value and || de-
notes the concatenation operation. Then, the attention scores
are normalized by softmax:

N e:vp(?”(,l-))

i
Zke/\/( i) exp(r,

where N(i) denotes the graph neighborhood of the i-th
node. The final aggregation process consists of two parts
representing the neighborhood impact and self impact re-
spectively:

(5
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where U) € RF*™ ig a trainable parameter matrix and
N (i) is the neighborhood of node i.

Modeling Supply and Demand Characteristic

Commuting flows can be viewed as a kind of spatial inter-
actions between supplies and demands (Rodrigue, Comtois,
and Slack 2016). Our model holds an underlying assumption
that the flows are determined by the supply characteristic of
the origin geographic unit and the demand characteristic of
the destination geographic unit.

To model both supply and demand characteristic of each
geographic unit, we use two separate GATs. In Fig. 3, the
GAT® extracts demand characteristic from origin geo-
graphic units and encodes the characteristic into origin em-
beddings. The GAT™Y extracts supply characteristic from
destination geographic units and encodes the characteristic
into destination embeddings. The two GATs have the same
structure, but the attention mechanism in GAT will assign
different weights to different features based on the origin or
destination roles, thus modeling supply and demand charac-
teristics.

Multitask Learning

As the goal of GMEL is to learn embeddings that encode
supply and demand characteristic for commuting flow pre-
diction, we adopt multitask learning framework to put more
restrictions for the GMEL training process.

Main Task: Predicting Commuting Flow Having the

origin and destination embeddings 7{°"? and 7\ from
GATs, a bilinear model is used to predict the commuting
flow:

Tij _ hgorg)Tthgdst) )

where W, € R™*™ is a trainable parameter matrix mod-
eling the interactions between origin embeddings and desti-
nation embeddings. The corresponding loss function of the
main task is:

mazn = ‘T| Z ij

where |T| is the total number of trips.

Ti5) ®)



Subtasks: Predicting In/Out Flow We include prediction
of the in/out-flow as two subtasks, i.e. predicting the to-
tal number of incoming/outgoing commuters of each geo-
graphic unit. The intuition is that the commuting flows and
in/out-flows are highly correlated and, thus, the two subtasks
would impose stronger restrictions on the training process of
GMEL. The in/out-flows are predicted by linear functions:

Ty = Wi b ©
T, = whhl®" (10)

where Wy, Wi, € R™X! are trainable vector parameters.
The corresponding loss function of two subtasks are:

1 -

‘Cout - N(Tz - Ti:)2 (11)
1 . ~

Lin = (L5 = Ty)* (12)

where NNV is the number of geographic units.

Overall Loss Function The overall loss function of
GMEL is formulated as the weighted sum of all three tasks:

)\S'U.)
EGMEL = >\7nain£main + TI(‘CZYL + Eout) (13)

where \,qin, Asup are the hyperparameters representing the
weights for main task and subtasks respectively.

Training Algorithm

Recall that our model consists of two components: GMEL
and flow predictor. We train GMEL using stochastic gradi-
ent descent method in an end-to-end manner. The learning
process of GMEL can be seen as pre-training. Having the
embeddings from well-trained GMEL, a GBRT is trained
as flow predictor based on the concatenation of origin-
destination embeddings and travel distance to predict the
commuting flow. The training process is summarized in Al-
gorithm 1.

Experiments

In this section, we provide an empirical evaluation of our
proposed model on real-world dataset.

Datasets

We validate our proposed model on real-world datasets from
New York City. To make comparison with state-of-the-art
models in the literature, we use similar experimental settings
as reported in (Pourebrahim et al. 2019). We use the 2010
New York City census tracts as geographic units (2168 units
in total). For commuting trips and urban indicators, we use
the following datasets:

LODES The 2015 Origin-Destination Employment
Statistics (LODES) dataset presents the commuting trips of
interest (US Census Bureau 2015). It is collected yearly and
records the home and employment locations of workers,
representing stable commuting flows. These flows are
aggregated into geographic unit level flow. 3,031,641 com-
muters and 905,837 pairs of origin-destination trips were

Algorithm 1: Training Algorithm
Input: Geo-adjacency Network G4y = (V, E, A),
Distance Matrix D,
Commuting Trips Tirqin = {(vi, v, Tij)}
Output: The learned GMEL,
The learned flow predictor f

/* GMEL Learning */
repeat
Thaten < Draw a training batch from 7,4y,

o | {RY — GATC9)(G o)

s | (WY}« GATUD (Gyy)

6 | Evaluate Lgypr by ({hv(;org)}, {h;dSt)L Thatch)
using Equation 13

VLaymErL < Backpropagate Loy EL

w 4w _'VVEG]VIEL // v is the

learning rate
9 until stopping criterion is met;

W N =

10 /x Flow Predictor Learning x/
1 {WY — GATr9) (G )
12 (A"} GATD (G o)

13 Xinput — {}a yinput — {}

14 for (v, v;,T;;) in Tyrain do

15 | Xinput ¢ Xinpur U Concat (" 1\* | D;))
16 yinput — yinput U Tij

17 end

18 f < Train GBRT on (Xinput, Vinput)

collected in New York City. We randomly divide the
commuting trips into training, validation and test datasets
by 6:2:2.

PLUTO The 2015 NYC Primary Land Use Tax Lot Out-
put (PLUTO) presents the urban indicators of interest (NYC
DCP 2015). It records land use and infrastructure informa-
tion at the tax lot level. This information is aggregated into
census tract level (65 urban indicators for each census tract).
A summary of the urban indicators is listed in Table 1.

OSRM We employ Open Source Routing Ma-
chine (OSRM) to measure the travel distance between
the centroids of census tracts (Luxen and Vetter 2011).
The travel distances will serve as the edge features of the
geo-adjacency network.

Baselines

To show the effectiveness of our model, we compare our
model with the following baselines:

e Gravity Model with Power-Law Decay (GM-P): Grav-
ity model with power-law distance decay function is the
most classic model for spatial interaction model. It’s
widely used in predicting commuting flows, cargo ship-
ping volume, etc. Basically, gravity model is a log-linear
model. The difference of models in this family lies in the



Table 1: Summary of Urban Indicators

Categories  # Features Contents

The number of different
types of buildings (25),
the density of com-
mercial/residential/etc.
units (4), the number of
buildings in each built year
interval (11)

Infrastructure 40

The number of tax lots
in different land use (11),
the land area ratio of re-
tail/office/etc. (10), statis-
tics of floor area ratio (2)

Land Use 23

Whether or not the census
tract contains landmarks or
historic districts (2)

Speciality 2

Total 65

form of the distance decay function. For further details of
gravity model, we refer the readers to (Lenormand, Bas-
solas, and Ramasco 2016).

e Gravity Model with Exponential Decay (GM-E): Grav-
ity model with exponential distance decay function is
another model in gravity model family. It is reported
to have better performance in predicting commuting
flows (Lenormand, Bassolas, and Ramasco 2016).

e Random Forest (RF): Recently, researchers proposed
to use gradient boosting machine to predict commuting
flows. RF is reported as the state-of-the-art model (Poure-
brahim et al. 2019; Spadon et al. 2019).

e Gradient Boosting Regression Tree (GBRT): GBRT be-
longs to gradient boosting machine family and is widely
used as regression model.

e Node2vec: Node2vec is an unsupervised learning model
to learn node embeddings from graph structured
data (Grover and Leskovec 2016). Recently, its variant
have also been applied to learn location embeddings for
spatio-temporal prediction tasks (Wang and Li 2017). We
incorporate Node2vec to learn the embeddings for each
census tract on the geo-adjacency network and use these
embeddings as inputs to train a gradient boosting regres-
sion tree as flow predictor.

To validate the effectiveness of our model architecture, we
also implement two variants of our model:

o GMEL-noMul: We remove multitask settings and only
keep the main task, i.e. setting Ajqin = 1, Agyp = 0 in
Equation 13.

o GMEL-noSep: We remove the settings of using two sep-
arate GATs to model supply and demand characteristics
respectively. Instead, only one GAT is used to generate
embeddings and this set is used as both origin and desti-
nation embeddings.

The above baseline models are compared to the GMEL
with multitask weights to be A, qin = 0.5, Agyp = 0.5, the
embeddings size of both GATs to be 128, and number of
GAT layers to be 2.

We implemented our model and the baselines using Py-
Torch (Paszke et al. 2017) and Deep Graph Library (Wang
et al. 2019a). The experiments were executed on a In-
tel E5-2690 v4 2.6 GHz, 256 GB of RAM, and a
NVIDIA Tesla P100 GPU with 12 GB of RAM.

Evaluation Metrics

To measure the prediction performance, we adopt three
evaluation metrics: Root Mean Square Error (RMSE),
Mean Absolute Error (MAE) and Common Part of Com-
muters (CPC).

1 ~
RMSE = \/|T| Z(Tij —Tij)? (14)
4,J
MAE = %ij — T (15)
1,3

2 Zij min(Tij7 Tz;)
Zij Tij + Zij 0y

RMSE and MAE are widely used as evaluation metrics
for regression problem. CPC is widely used in commuting
flow prediction problem (Lenormand, Bassolas, and Ram-
asco 2016; Robinson and Dilkina 2018), and it measures
the common part of agreements between predicted value and
target value. CPC is 0, when no agreement is found, and is
1, when the two are identical.

CPC =

(16)

Performance Analysis

Table 2: Performance on Test Set

Model RMSE MAE CPC"
GM-P 7.035 2236 0.589
GM-E 6.944 2179 0.602

RF 6.273 2436 0.638
GBRT 5454 1974 0.707

Node2vec 5455 1994 0.704
GMEL-noMul 5356 1910 0.716
GMEL-noSep 4982 1.772 0.737
GMEL (ours) 4.887 1.747 0.741
" Higher is better.

We evaluate the performance of the baseline models and
our model on the test set, and summarize the results in Ta-
ble 2. From the experiments, we have the following obser-
vations:
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Figure 4: Results of different hyperparameter settings.

e Gravity models have the worst performance among all
models. The reason might be that simple assumptions
of gravity model cannot capture the complex patterns of
commuting flows and thus lead to poor predictive power.

e RF and GBRT generally have better performance than
gravity models, which is in accordance with recently pub-
lished literature (Pourebrahim et al. 2019). The reason
might be that gradient boosting machine is better capable
of handling nonlinearity.

e Node2vec is slightly better than RF and only compara-
ble to GBRT, even though it uses graph neighborhood
structure to generate embeddings. The reason might be
Node2vec is designed to preserve network neighborhood
of nodes, but this neighborhood information is not useful
for characterizing the supply and demand characteristics
of the city.

e All GMEL variants outperform the above baseline mod-
els. This verifies the effectiveness of leveraging geo-
graphic contextual information for commuting flow pre-
diction.

e GMEL outperforms GMEL-noMul and GMEL-noSep.
This shows the effectiveness of multitask learning frame-
work and the necessity of modeling supply and demand
characteristic separately.

To this end, we have validated the effectiveness of our
model.

Residual Analysis

To illustrate the effectiveness of exploiting spatial correla-
tions, we present the residual maps in Fig. 5. These maps
show the difference between predicted and ground-truth in-
coming flows, i.e. the sum of the residuals of flows to the
same destination, in each census tract. We compare GMEL
with the state-of-the-art model GBRT (Pourebrahim et al.
2019). In Fig. 5, we can observe that the residuals of GMEL
are spatially smoother than that of GBRT. The reason is that
GMEL exploits geographic contextual information to cap-
ture spatial correlations, and in doing so the prediction will
take into account both the characteristics of regions of inter-
est and the influence of nearby regions.

-1242  -811 -412 -15 125 380 704

(a) Residuals of GBRT (b) Residuals of GMEL

Figure 5: Spatial distribution of residuals. Red indicates un-
derestimation and blue indicates overestimation. Light blue
census tracts indicate the best predictions.

Parameter Sensitivity Analysis

We also analyze the parameter sensitivity of our model.
Three main hyperparameters of GMEL are examined,
namely the number of GAT layers, embedding size and mul-
titask weights. The results are shown in Fig. 4.

The effect of number of GAT layers The number of GAT
layers determines the depth of graph neighborhood. For ex-
ample, if the number of GAT layers is 2, then all graph
neighboring nodes within two-hops would have an effect on
the target node. In our scenario, this hyperparameter implic-
itly defines the geographic range of influence. From Fig. 4a,
we can see that when the number of GAT layers is one, the
model performs worse. When the number of GAT layers is
greater than or equal to two, the performance doesn’t fluctu-
ate too much. This indicates that the effective graph neigh-
borhood is two-hops graph neighborhood. In New York City,
the two-hops graph neighborhood covers on average 1.5 km,
which is approximately 15-minutes walking distance.

The effect of embedding size We also conduct experi-
ments on several alternatives of embedding size, i.e. 32, 64,
128, 256. In Fig. 4b, we can find that the performance in-
creases as the embedding size increases from 32 and satu-
rates at the size of 128.
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Figure 6: Top-5 salient urban indicators.

The effect of multitask weights Different set of multitask
weights are also tested, see Fig. 4c. Recall that the subtasks
are introduced to enhance the performance of the main task.
Indeed, we can observe in Fig. 4c that when the weight of
subtasks increases, the performance of the main task keeps
increasing until the weights of the main task and subtasks
are equal, i.e. A\ppgin = 0.5, Agyup = 0.5.

Feature Sensitivity Analysis

We evaluate the impact of the urban indicators by comput-
ing the saliency map of GMEL (Simonyan, Vedaldi, and
Zisserman 2013). In our case, saliency map represents the
average gradients of output estimates with regards to ur-
ban indicators, exhibiting its overall effect on commuting
flows. A larger absolute value of the saliency map points to
a more prominent urban indicator. Three saliency maps are
evaluated: edge-level flows, in-flows and out-flows. Fig. 6
shows the most prominent urban indicators. These salient
urban indicators present the supply and demand characteris-
tics for different kind of flows. For example, the number of
buildings per square meters, indicating job opportunities, is
salient for in-flow, meanwhile, floor area ratio of residence,
indicating the density of regular residences, is salient for
out-flow.

Case Study

To further evaluate the usefulness of our proposal, we show
a case study focusing on census tracts that experienced ma-
jor changes in their urban indicators between the years of
2013 and 2015. We first select a set of 5 census tracts that
had the largest changes when considering their urban indica-
tors between these two years. Next, we train a model on the
2013 data set (PLUTO and LODES) and test the prediction
performance of the model considering the 2015 data set. In
our experiments, the mean absolute error and standard devi-
ation between the predicted flow values and the groundtruth
for the selected 5 census tracts are the following: 1.07 &
1.25,1.40£2.12,1.26 +2.08,0.99 + 1.73,0.86 & 1.37. By
having a model trained on a particular year, GMEL can be
used to predict the origin and destination of new commuting
flows, given changes in the urban indicators. This highlights
how our proposal can guide urban planners and policy mak-
ers to make informed decisions when it comes to new urban
development scenarios.

Conclusion

In this paper, we study the problem of predicting commut-
ing flow using only the information of infrastructure and
land use, a fundamental problem in urban planning and pub-
lic policy development. Different from conventional grav-
ity model and recently proposed machine learning meth-
ods, we propose the use of geographic contextual informa-
tion for commuting flow prediction. As such, an end-to-
end embedding learning framework based on graph atten-
tion network is proposed to learn geo-contextual embed-
dings of the geographic units. The learned embeddings are
then fed to a gradient boosting machine to make predictions.
We conduct extensive experiments on real-world datasets
from New York City. The results show that introducing ge-
ographic contextual information can greatly improve the ac-
curacy of prediction and our model outperforms all baseline
methods including the state of the art.
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