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Deep learning is
everywhere
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But what is actually
going on in DL models?
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Deep learning models are complex

Deep learning models are often complex, application-driven, and hard to
Investigate.

Visualization is crucial for understanding deep learning models.

What does visualization in deep learning look like?
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Visual Analytics in Deep Learning | Interrogative Survey Overview
B WHY ) WHAT ) WHEN

Why would one want to use What data, features, and relationships When in the deep learning
visualization in deep learning? in deep learning can be visualized? process is visualization used?
Interpretability & Explainability Computational Graph & Network Architecture During Training

Debugging & Improving Models Learned Model Parameters After Training

Comparing & Selecting Models Individual Computational Units

Teaching Deep Learning Concepts Neurons In High-dimensional Space

Aggregated Information
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g WHO g HOW ) WHERE

Who would use and benefit How can we visualize deep learning Where has deep learning
from visualizing deep learning? data, features, and relationships? visualization been used?
Model Developers & Builders Node-link Diagrams for Network Architecture Application Domains & Models
Model Users Dimensionality Reduction & Scatter Plots A Vibrant Research Community
Non-experts Line Charts for Temporal Metrics

Instance-based Analysis & Exploration
Interactive Experimentation
Algorithms for Attribution & Feature Visualization

Hohman, F., Kahng, M., Pienta, R., & Chau, D. H. (2018). Visual analytics in deep learning: An interrogative survey for the next frontiers. IEEE transactions on visualization and computer graphics, 25(8), 2674-2693.




Explainability
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Attribution for Pixels

Pixel attribution/Saliency maps are a unique case of feature attribution for image classifiers.

Image classifiers produce S(I) — Sl (I), SQ(I), coey S|C|(I)]

Pixel attribution methods take /)’ E Rp as input

And output a relevance score

R°=|R{,R5,...., R’

p
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Saliency Map Approaches

- (-3-)

Gradient-Based Perturbation-Based
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Saliency Map Approach

Step 1: Pass the image through the network.
Step 2: Compute the gradient of the class score w.r.t the input pixels.

Step 3: Visualize the gradients (either by taking the absolute values or
visualizing positive/negative values separately).
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Greyhound (vanilla) Soup Bowl (vanilla) Eel (vanilla)

o

Greyhound (vanilla) Soup Bowl (vanilla) Eel (vanilla)

i
g

Greyhound (Smoothgrad) Soup Bowl {(Smoothgrad) Eel (Smoothgrad)

Indicating the
book, rather than
the dog!

Greyhound (Grad-Cam) Eel (Grad-Cam)

Example taken from Christoph Molnar’s online
“Interpretable Machine Learning” book.




Differences in Pixel Attribution Output
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Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim, B. (2018). Sanity checks for saliency maps. Advances in neural information processing systems, 31
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Pixel Attribution Takeaways

T

l There can be significant variation in the output of different saliency map methods.

O Yet, saliency maps still provide an easy-to-digest local explanation method for images.
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Debugging and
Summarization
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Summit: Scaling Deep Learning Interpretability

Understanding how a DL model generates a prediction is tricky.

Summit is a visual analytics system to summarize and visualize what features a DL model is learning.

Q¥
o> ~"‘ €0 |nstead of local attributions, Summit provides a more aggregated view of what a model is learning.
d 3 "o
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Attribution Graph

white wolf Attribution

F_ Graph
L | -* | ointy ear
‘ o POy white fur

white wolf
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Activation and Influence Aggregation
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Summit: Scaling Deep Learning Interpretability

g MODEL DATASET
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Summit Use Cases: Unexpected Semantics

Tench is a common fish
to be caught for sport.

The model is learning
hands in early layer but
not the fish!

LL, AW
scales person

L
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Would you hold this lionfish?
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Would you hold this lionfish?

A\

Lionfish have venomous
fins and are hazardous
to divers and fishermen.

,ﬁj uu,' qu'”f ”’/@« No hands here!
?@\2 :P: .!;2,;; h
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Summit Use Cases: Unexpected Semantics

|
Attnbutmn graph substructure in class.
W= = iqwﬂ
| stripes orange ffsh
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Summit Use Cases: Mixed Class Association through Layers

Is a horsecart more mechanical or animal?

(3a)>(@0)> 42y Dp(acp 4dp 4> Gap &)

layers

~ wheel horse h.‘p harse gear

example feature visualizations
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Summit Use Cases: Discriminable Features in Similar Classes

The intersection of
brown bear and black bear.
Both classes share some bear-ness.
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Teaching
Deep Learning Concepts
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CNN Explainer

Q” Understanding deep learning is challenging, especially for beginners.

[é A= CNN Explainer is a system which helps understand CNNs, which are
SaR often taught in intro DL classes and used in practice.

@9@ CNN Explainer was designed in conjunction with instructors and
students

Wang, Z.]., Turko, R., Shaikh, O., Park, H., Das, N., Hohman, F., ... & Chau, D. H. P. (2020). CNN explainer: learning convolutional neural networks with interactive visualization. /EEE
Transactions on Visualization and Computer Graphics, 27(2), 1396-1406.
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Learning DL is hard!

Biggest Challenges in Learning CNNs
Connection of math & structure
Math behind layers
CNN training workflow
Backpropagation
Layer and weight dimensions
Layer connections
CNN structure

Most Desired Features for a Visual Learning Tool

Show structure of CNNs

Use a live CNN model

Show math formulas

Run on user's own image
Algorithm animation

Explain math in geometric context
Explain intermediate computations
Change hyperparameters

Explain backpropagation

Upload user's own model

Count
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=
—_
]
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I
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CNN Explainer

CNN EXPLAINER Learn Convolutional Neural Network (CNNJ in your browser!

(® Convolutional Elastic Explanation unit v

input canv 1.1 refu 1.1 con el 1.2 max_poal CONV_ 2
) Overview v

r
T
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CNN Explainer

input
(64, 64, 3)

Red channel

conv. 11
{62, 62, 10)

relu_1_1
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CNN Explainer

Convolution
Input (64, 64) Qutput (62, 62)

B -

x =0.26 = -0.22

+ B + m +

x -0.97 = -0.26 = -0.03

&

{ﬁg.l Hover over the matrices to change kernel position.
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CNN Explainer

max_pool_2
{13, 13, 10}

b
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CNN Explainer Takeaways

Users found the connection between model structure and low-level mathematical
) operations helpful.

Animations improve engagement and aid in navigation,

la

O Customization facilitates engagement and hypothesis testing.

—O
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Libraries for DL
Visualization
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Tensorboard

Improved visualization capabilities are now packaged in many popular
DL libraries, like TensorFlow.

TensorBoard is a visual analytics system that allows one to:

i<

@ Visualize the operation graph

[[F%D] Track weights over time

§ Project inputs into low dimensions
e

Track and visualize metrics
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Tensorboard %stensorboard --logdir logs/fit
—

TensorBoard SCALARS GRAPHS DISTRIBUTIONS  HISTOGRAMS  TIME SERIES

[] Show data download links Q_ Filter tags (regular expressions supported)

Ignore outliers in chart scaling
epoch_accuracy A
Tooltip sorting method: default -

epoch_accuracy
tag: epoch_accuracy

Smoothing
0.978
D ———— ] 0.6
0.974
0.97
Horizontal Axis 0.966

STEP RELATIVE WALL 09862

0.958
Runs 0 1 2 3 4
ri =
Write a regex to filter runs La = El
() 20221006-191109/train
O 20221006-191109/validation epoch_loss ~
TOGGLE ALL RUNS
epoch_loss
logs/fit tag: epoch_loss
013
011
0.09
0.07
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Tensorboard (Operation Graph)

SCALARS

TensorBoard

Search nodes (regex)

GRAPHS

[F3] Fitto screen
¥  Download PNG
4 Upload file

Run (1) 20221006-191109/train

Tag (2) Default

Graph type
® Opgraph
(O Conceptual graph
O Profile

Node options

J Trace inputs
Legend

colors same substructure

() unique substructure
(* = expandable)
MNamespace* ?

O OpMNode ?
233 Unconnected series* 7
= Connected series* ?
(@ Constant ?

Summary ?

> Dataflow edge ?
Control dependency edge 2
»  Reference edge ?

DISTRIBUTIONS

HISTOGRAMS  TIME SERIES

Ientity_2
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Wodp L -
7
Ieerity
/
div_no_nan | - e
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# .
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./'
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Tensorboard (Distribution View)

|
TensorBoard SCALARS GRAPHS DISTRIBUTIONS HISTOGRAMS  TIME SERIES INACTIVE
Horizontal axis Q, Filter tags (regular expressions supported)
RELATIVE WALL
dense_1 2
Runs dense_1/bias_0 [Z022TO06SASTAONEER jcnse 1/kemel 0 20221006-131109/train.
tag: dense_1/bias_0 tag: dense_1/kemel_0

Write a regex to filter runs

02 -+
(@® 20221006-191109/train
(O 20221006-191109/validation i)
TOGGLE ALL RUNS o4
logs/fit 01
0 1 2 3 4 0 1 z 3 4
ra ra
kd L d
dense 2A
dense/bias_0 120221006-191109/train, dense/kernel_0 120221006-191109/train
tag: dense/bias_0 tag: dense/kernel_0
05 | |
014 | I I | 02 | I ] I I
g ———
0.4
01 ]
07 4
o 1 2 3 4 ] i z 3 4
r ra
LJ LJd
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Tensorboard (Histogram View)

TensorBoard SCALARS GRAPHS DISTRIBUTIONS HISTOGRAMS  TIME SERIES INACTIVE

Histogram mode Q_ Filter tags (regular expressions supported)

dense_1 2 A
Offset time axis dense_1/bias_0 20221006-191109/train. dense_1/kernel_0 R

tag: dense_1/bias_0 tag: dense_1/kemel_0
RELATIVE WALL

Runs

Write a regex to filter runs

(® 20221006-191109/train

(O 20221006-191109/validation

rA ra
TOGGLE ALL RUNS La La
logs/fit
dense 2 A
dense/bias_0 120221006-191109train. dense/kernel_0 20221006-191109/train.
tag: dense/bias_0 tag: dense/kernel_0
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Uses of TensorBoard

Visualizing the loss or gradients can help adjust the learning rate. Also
helpful to see such values live.

Visualizing the computation graph can help identify that the model is
doing what the practitioner intends.

Visualizing weights over time can help spot issues such as poor
Initializations.
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Model assessment
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We will show methods. We will show
systems.

G
Methods Systems
Confusion matrices Squares
ROC Curves Confusion Wheel
Calibration Calibrate
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Accuracy is simple.

Where does it fail?

Fabio Miranda | CS524: Big Data Visualization & Visual Analytics @ COMPUTER SCIENCE 21
D e




Scenario: Disease Prediction

Consider a disease prediction model.
Suppose the hypothetical disease has a 5% prevalence in the population.

The given model converges on the solution of predicting that nobody has the
disease (i.e., the model predicts “0” for every observation).

Our model is 95% accurate. Yet, public health officials are stumped.
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Extended Confusion Matrix

Total population
=P+N

Positive (P)

Negative (N)

Actual condition

Prevalence

—
“P+N

Accuracy (ACC)
= JP+TN
= "P+N
Balanced accuracy (BA)

_ TPR + TNR
= 7]

Predicted condition
Positive (PP) Negative (PN)
Fal tive (FN),
True positive (TP), alse negative (FN)
hit type Il error, miss,

False positive (FP),
type | error, false alarm,
overestimation

Positive predictive value (PPV),

precision
=5 =1-FDR
False discovery rate (FDR)
=EE=1-PPV
F, score
_ 2PPVxTPR _ 2TP

~ PPV+TPR ~ 2TP + FP +FN

underestimation

True negative (TN),
correct rejection

False omission rate (FOR)

FN
= EN=1-NPV

Negative predictive value (NPV)

= IN -
=gy =1-FOR

Fowlkes—Mallows index (FM)

= VPPVXTPR
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Informedness, bookmaker informedness (BM)
=TPR+TNR - 1

True positive rate (TPR), recall, sensitivity (SEN),
probability of detection, hit rate, power

False positive rate (FPR),
probability of false alarm, fall-out

ZFB
= -1-TNR

Positive likelihood ratio (LR+)

_TPR
= FPR

Markedness (MK), deltaP (Ap)
=PPV + NPV - 1

Matthews correlation coefficient (MCC)

= VTPRxTNRxPPVxNPV - VvFNRxFPRxFORxFDR

Sources: [20][21][22][23][24][25][26][27] view - talk- edit

Prevalence threshold (PT)
PRxFPR - FPR

= TPR-FPR
False negative rate (FNR),

miss rate

True negative rate (TNR),
specificity (SPC), selectivity
=1 =1-FPR

Negative likelihood ratio (LR-)

_ENR
= TNR

Diagnostic odds ratio (DOR) = FR*

Threat score (TS), critical success index (CSl),

. e TP
Jaccard index = TPTENFP
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Extended Confusion Matrix
]

Predicted condition
Total ulation
pop Positive (PP) Negative (PN)
=P+N
False negative (FN),
c True positive (TP),
2 Positive (P) s e type Il error, miss,
= hit
E underestimation
o
o
w False positive (FP), .
= True negative (TN),
5 Negative (N) type I error, false alarm, g )
<t correct rejection
overestimation
Positive predictive value (PPV), L
Prevalence False omission rate (FOR)
B precision FN
=P+N —Ez"_FDH =m=1"NPV
= PP _
Accuracy (ACC) False discovery rate (FDR) Negative predictive value (NPV)
= IE+TN =EF - 1-ppv =IN —1_-FOR
_ = "P+N “PPT “PN T
Balanced accuracy (BA) F, score Fowlkes—Mallows index (FM)
_ TPR + TNR _ 2PPVxTPR _ 2TP —+/PPV<TPR
= 2 T PPV+TPR ~ 2TP +FP +FN =VPPVXTPR
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Informedness, bookmaker informedness (BM)
=TPR+TNR -1

True positive rate (TPR), recall, sensitivity (SEN),

probability of detection, hit rate, power

False positive rate (FPR),
probability of false alarm, fall-out
= =1-TNR

Positive likelihood ratio (LR+)

_TPR
= FPR

Markedness (MK), deltaP (Ap)
=PPV + NPV - 1

Matthews correlation coefficient (MCC)

= VTPRxTNRxPPVxNPV - VvFNRxFPRxFORxFDR

Sources: [20][21][22][23][24][25][26][27] view - talk- edit

Prevalence threshold (PT)
PRxFPR - FPR

= TPR-FPR
False negative rate (FNR),

miss rate

True negative rate (TNR),
specificity (SPC), selectivity

Negative likelihood ratio (LR-)

_ ENR
= TNR

Diagnostic odds ratio (DOR) = [L-_E-E

Threat score (TS), critical success index (CSl),

; T ! i -
Jaccard index = 35T EN T EP
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Confusion Matrices in sklearn

12

matplotlib.pyplot plt
sklearn.metrics plot_confustion_matrix

clf.fit(X_train, y_train)

True label

plot_confuston_matrix(clf, X_test, y_test)
plt.show()

Predicted label
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Confusion Matrices in sklearn

[
Ariel Sharon Pros
125 . .
Colin Powell o Many derived metrics
z ”;”E"” T;ff': - Easy to implement
E eorge [ . .
£ cermard schroeder I w0 Summary of model mistakes is clear
Hugo Chavez 2 7 7
Tony Blair . - ' T-’ 5 ConS
5 g g f:a Hard to scale
258" Hard to assess probabilistic output
g% ¢ Hard to view individual errors
Predicted ILa:lt:EI
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ROC Curves
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Classifiers of another age

Classifier Data

Class 1

Class O

As radar technology advanced during WW2, the need for a standard system to evaluate detection accuracy
became apparent. ROC analysis was developed as a standard methodology to quantify a signal receiver's ability
to correctly distinguish objects of interest from the background noise in the system.
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Receiver Operating Characteristic (ROC)

ROC analysis is another way to assess a classifier’s output.

ROC analysis developed out of radar operation in the second World War, where operators were
interested in detecting signal (enemy aircraft) versus noise. Thereafter, it became popular in
medicine and bioinformatics.

We create an ROC curve by plotting the true positive rate (TPR) against the false positive rate
(FPR) at various thresholds.
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ROC Curve

sklearn.metrics roc_curve
sklearn.metrics RocCurveDisplay

y_score = clf.decistion_function(X_test)

fpr, tpr, _ = roc_curve(
pos_label=clf.classes_[1

y_test, y_score,
]

)

roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot()
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Receiver operating charactenistic example
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ROC curve (area = 0.79)
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False Positive Rate
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ROC Curve

Good classifiers will .
exhibit ROC curves i

that are “up andto 2"
the left’. E 0.4 -
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Receiver operating characteristic example

ROC curve (area = 0.79)

02 0.4 .G 0.8 10
False Positive Rate

We can calculate the
“‘area under the
curve”, or AUC, as a
measurement of
classifier quality.

@ compuTER SCIENCE



ROC Curve (multiclass)

Some extension of Receiver operating characteristic to multiclass

Micro-average

In multiclass Lo
scenarios. we Aggregate contributions of all
J : 0.8 - classes to calculate the
have to binarize u metric. Useful if there is class
the labels and T 06- imbalance.
plot each z \
w 0.4 . e T _ acro-average
* micro-average ROC curve (area = 0.73) _
Separately lﬂ g macro-average ROC curve {area = 0.78) Compute the metric for each
0.2 A, ,,.-"*’ ROC curve of class 0 (area = 0.91)
\ - ROC curve of class 1 (area = 0.60) class Separately’ then take
e —— ROC curve of class 2 (area = 0.79) average (treats all classes
0.0 ¥ - - - - equally).
0.0 0.2 0.4 0.6 0.8 10
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False Positive Rate
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Visual Analytics Systems

Model Understanding
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Squares (2016)
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Fig. 1. Squares displaying the performance of two digit recognition classifiers trained on the MNIST handwritten digits dataset [24].
These classifiers yield the same accuracy of 0.87 (top: random forest, bottom: SVM), but show vastly different score distributions.

Ren, D., Amershi, S., Lee, B., Suh, J., & Williams, J. D. (2016). Squares: Supporting interactive performance analysis for multiclass classifiers. IEEE
transactions on visualization and computer graphics, 23(1), 61-70.
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Fig. 5. The strips and stacks view group boxes together when there
are a large number of classes or instances. Users can toggle between
boxes (left), strips (center), and stacks (right) at the class level.

Ren, D., Amershi, S., Lee, B., Suh, J., & Williams, J. D. (2016). Squares: Supporting interactive performance analysis for multiclass classifiers. IEEE

transactions on visualization and computer graphics, 23(1), 61-70.
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Squares
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Fig. 4. Squares displaying the performance of a digit recognition classifier trained on the MNIST handwritten digits dataset [24]. All classes are
represented with stacks except C3 and C5 which are expanded to boxes for more details. The solid red boxes in C5’s column represents instances
correctly predicted as C5 while the green-stripped boxes in that column represent instances labeled as C3 but incorrectly predicted as C5.

Ren, D., Amershi, S., Lee, B., Suh, J., & Williams, J. D. (2016). Squares: Supporting interactive performance analysis for multiclass classifiers. IEEE
transactions on visualization and computer graphics, 23(1), 61-70.
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Squares
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Fig. 6. Bi-directional coupling between the visualization and table allows users to view instance properties in the table by selecting boxes, strips,

or stacks from the visualization, or locate interesting instances found in the table in the visualization.

Ren, D., Amershi, S., Lee, B., Suh, J., & Williams, J. D. (2016). Squares: Supporting interactive performance analysis for multiclass classifiers. IEEE

transactions on visualization and computer graphics, 23(1), 61-70.
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Evaluating Squares

T1: Select the classifier with the larger number of errors (this required displaying two
visualizations side-by-side).

T2: Select one of the two classes with the most errors.
T3: Select an error with a score of .9 or above in the wrong class.

T4: Select the classifier with the worst distribution (this required displaying two visualizations
side-by-side).

T5: Select one of the two classes with the worst distribution.

T6: Select the two classes most confused with each other.
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Evaluating Squares

I
Compared against an interactive confusion matrix.

We ran the comparison part of the study as a 2 (Visualization: Squares vs. ConfusionMatrix) x 2
(Class-Size: Small vs. Large) x 3 (Task: T1, T2, and T3) within-subjects design.

Small class size classifiers had 5 classes and Large ones had 15.
Visualization 1 Vis. 2 : Squares
| —— Small — r Large 1 [ —‘ —— Small — rLarge; |
N I R 1 e A R N H I | X {3 | G | e W |
L 10

Part 1 Part2 ———

Introduction & Tutorial Survey & Questionnaire Task (3 rep.)

Fig. 8. The study consists of two parts. In the first part, we compared
Squares to an interactive confusion matrix. In the second part, we eval-
uate only Squares for estimating score-based metrics.
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Evaluating Squares
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Evaluating Squares

T1 T2 T3
S 15 5 15 5 15

Visualization

Helpfulness
Squares 43 43 47 4.1 41 47
Confusion Matrix 3.7 3.7 38 35 35 3.1

Preference
Squares 20 17 23 20 23 23
Confusion Matrix 5 7 2 5 2 2

Table 1. Subjective responses: (top) means of participant responses
on how helpful (5=Very helpful) the visualization was by task for each
class size; (bottom) the numbers of participants who preferred the visu-
alization by task for each class size.
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Alsallakh et. al. (2014)
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Fig. 1. Qur visual analysis tools: (a) the confusion wheel shows sample-class probabilities as histograms colored by classification
results, (b) the feature analysis view depicts feature distributions among selected samples, separated by their results, and ranked by
a separation measure, (c, d) histograms and scatterplots reveal the separability of selected true and false classified samples by one
or two features.

Alsallakh, B., Hanbury, A., Hauser, H., Miksch, S., & Rauber, A. (2014). Visual methods for analyzing probabilistic classification data. IEEE transactions

on visualization and computer graphics, 20(12), 1703-1712.
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Alsallakh et. al. (2014)
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Fig. 3. Visualizing classification results of 10,992 handwritten digits [5] (a) using a confusion matrix augmented with histograms of sample prob-
abilities in the respective rows and columns, (b) using the confusion wheel: Sectors represent digits with chords showing classification confusion
between them. Histograms represent the probabilities of the samples in each class according to the color legend.

Alsallakh, B., Hanbury, A., Hauser, H., Miksch, S., & Rauber, A. (2014). Visual methods for analyzing probabilistic classification data. IEEE transactions
on visualization and computer graphics, 20(12), 1703-1712.
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Beauxis-Aussalet and Hardman (2014)

Classification Software #1
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Figure 2: Alternative visualizations of confusion matrices: our design, and equivalent ROC and Precision/Recall curves.

Beauxis-Aussalet, E., & Hardman, L. (2014). Visualization of confusion matrix for non-expert users. In IEEE Conference on Visual Analytics Science
and Technology (VAST)-Poster Proceedings.
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Beauxis-Aussalet and Hardman (2014)

Classification Errors (in % of true orginal class)
125% -

100% |~ .

75% [~ I

.
||
50% [~
25% [~
25% [~ I
- R G P
& >

Selected
Items

Rejected
Items

Anchovy Barracuda Clown Fish Other Classes
Legend:
D Items classified as Anchovy . Main class confused with Anchovy

. Items truly belonging to Anchovy . 2nd class confused with Anchovy

. Sources of false Anchovy detection Other classes involving confusion

Figure 3: Visualization for analyzing of inter-classes confusions.
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Calibration
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What if accuracy doesn’t
matter?

What if we care about probabilities instead of labels?
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Scenario: Weather Prediction (A

o
I 6870

Consider a weather channel that sets a chance of rain to its viewers, daily.

The average chance of rain is 30%.

Since the channel doesn’t use machine learning, they simply tell their viewers there is
an 30% chance of rain every day.

The weather channel claims it is accurate, but all that the viewers have learned is that
there is, on average, a 30% chance of rain.
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What is calibration?

Typically, we turn to accuracy to help us evaluate models. This makes sense
when the model output we care about is the predicted class label.

Oftentimes, however, we are interested in the probabilistic output. For example,

applications that rely on probabilistic quantities, like betting, require our models
not necessarily to be accurate but return probabilities that reflect reality.

Fabio Miranda | CS524: Big Data Visualization & Visual Analytics
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Modern neural networks can often
produce “bad” probabilistic outputs

How do we measure how well a
model’'s probabilistic output aligns with
reality?

Image taken from Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017, July). On
calibration of modern neural networks. In International Conference on Machine
Learning. PMLR.
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Figure I. Confidence histograms (top) and reliability diagrams
(bottom) for a 5-layer LeNet (left) and a | 10-layer ResNet (right)
on CIFAR-100. Refer to the text below for detailed illustration.
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Basic Calibration Plots (Reliability Diagram)

Calibration plots (SVC)
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Expected Calibration Error (ECE)

B b
ECE = Z %\acc(b) — conf(b)]
b=1
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Expected Calibration Error (ECE)
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Maximum Calibration Error (MCE)

MCE = ma acc(B,,) — conf(B,,
me{l,z,.’f,m\}‘ (Bm) f(Bm)|
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Calibration in sklearn Bin 1 Example

Three observations,

sklearn.calibration import calibration_curve pred|Cted 01, 02’ and
y_true np. ((e, 0, 0, 0, 1, 1, 1, 1, 1]) 03
_pred = np. (f6.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9, 1.]) .
;rgb_true,pprob_pred = (y_true, y_pred, n_bins=3) - A” three ObSGNatIOnS
S — are truly of class “0”.
SBk g B ol - Assume a decision
>>> prob_pred
p([::z;.g , 0.525, 0.85 ]) boundary of 0.5.
Thus:
Can also pass a parameter strategy as ‘uniform’ or aCC(bl) _ 1
‘quantile’. 0.9+ 0.8+0.7
Check out the official sklearn documentation. conf(by) = 3
Fabio Miranda | CS524: Big Data Visualization & Visual Analytics @ COMPUTER SCIENCE



https://scikit-learn.org/stable/modules/generated/sklearn.calibration.calibration_curve.html

Visualization Calibration for Multi-Class Problems
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Figure 1: Two-dimensional reliability diagrams for LeNet on the CIFAR-10 test set with 25 and 100 bins of equal size. The
predictions are grouped into three groups {0, 1,2}, {3,4,5}, and {6,7, 8,9} of the original classes. Arrows represent the
deviation of the estimated calibration function value (arrow head) from the group prediction average (arrow tail) in a bin.
The empirical distribution of predictions is visualized by color-coding the bins.

ificial Intelligence and Statistics. PMLR, 2019.
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Image taken from Vaicenavicius, Juozas, et al. "Evaluating model calibration in classification." The 22nd International Conference o
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What to do if your classifier is uncalibrated?
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Platt Scaling

[
—  True label

Classifier output

p(yi = 1| 1)

"~ 1+ exp(Af; + B)

Determined via MLE
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Platt Scaling

Assumes the calibration curve can be corrected by applying a sigmoid to the raw
predictions.

Works best if the calibration error is symmetrical (classifier output for each binary
class is normally distributed with the same variance)

This can be a problem for highly imbalanced classification problems, where
outputs do not have equal variance.

In general this method is most effective when the un-calibrated model is under-
confident and has similar calibration errors for both high and low outputs.
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Isotonic Regression

I
Fits a non-parametric isotonic regressor, which

outputs a step-wise non-decreasing function.

Isotonic regression is more general when
compared to Platt scaling, as the only restriction
is that the mapping function is monotonically
Increasing.

Thus, isotonic regression is more powerful as it
can correct any monotonic distortion of the un-
calibrated model. However, it is more prone to

overfitting, especially on small datasets.

Fabio Miranda | CS524: Big Data Visualization & Visual Analytics

300

2501

200}

150f

100

50f

e o Data

— |sotonic Fit
- - Linear Fit

20

40 60 80 100

@ compuTER SCIENCE



Isotonic vs. Platt Scaling

Gaussian naive Bayes probabilities

1.0 1 —— No calibration (0.104)
= |sotonic calibration (0.084)
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Instances sorted according to predicted probability (uncalibrated GNB)
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Proper Scoring Rules

Proper scoring rules are calculated at the observation level, where as ECE is binned.

Brier Score 2
EY; — Y;)
@ —

__Z yilog(9;)+(1—y;)(log 1 — ;)

Log Loss

from sklearn.metrics import brier score loss, log loss
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Evaluation Trade-Off
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Evaluation Trade-Off
— [ Gap pred. mean
08 -

Now, change all of the “1” class to g
have predicted probabilities of 0.9. Ry
Then, we see -,
Accuracy: 1 (-) " 02l
ECE: 0.1 (increased)
Log Loss: 0.1054 (decreased) 00 F—=5— - o

Predicted probability

Q: Why did log loss decrease?
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Bl True class prop
1 Gap pred. mean

Evaluation Trade-Off

Now, change all of the “1” class to 08
have predicted probabilities of 0.9.
Then, we see

Accuracy: 1 (-)

ECE: 0.1 (increased)

Log Loss: 0.1054 (decreased) 02 -

06 B

0.4 - "

Proportion of positives
A\

Q: Why did log loss decrease? 00 ** - " o
A: Proper scoring rules can be Predicted probability

decomposed into terms with
different interpretations (Kull and
Flach, 2015).
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Calibration Takeaways

(1) Reliability diagrams are a standard way to visualize calibration.
(2) ECE is a summary of what reliability diagrams show.

(3) Proper scoring rules (Log loss, Brier score) measure different aspects of probability
correctness.

(4) However, proper scoring rules cannot tell us where a model is miscalibrated.
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Suggested Calibration Literature

Niculescu-Mizil, A., & Caruana, R. (2005, August). . In Proceedings of the 22nd international
conference on Machine learning (pp. 625-632).

Nixon, J., Dusenberry, M. W., Zhang, L., Jerfel, G., & Tran, D. (2019, June). . In CVPR Workshops (Vol. 2,
No. 7).

Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017, July). . In International Conference on Machine

Learning (pp. 1321-1330). PMLR.

Vaicenavicius, J., Widmann, D., Andersson, C., Lindsten, F., Roll, J., & Schon, T. (2019, April). .In
The 22nd International Conference on Atrtificial Intelligence and Statistics (pp. 3459-3467). PMLR.
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. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 68-85). Springer, Cham.
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https://dl.acm.org/doi/pdf/10.1145/1102351.1102430?casa_token=o_8UMED_0fIAAAAA:MIq2GzQTPT0f-aWNDSijbcnzJN1riBdGqjq9FGn-wOZ188AOtXbTqRPkc9PuQGKSFIo5b4fM8-ItjQ
http://openaccess.thecvf.com/content_CVPRW_2019/papers/Uncertainty%20and%20Robustness%20in%20Deep%20Visual%20Learning/Nixon_Measuring_Calibration_in_Deep_Learning_CVPRW_2019_paper.pdf
http://proceedings.mlr.press/v70/guo17a/guo17a.pdf
http://proceedings.mlr.press/v89/vaicenavicius19a/vaicenavicius19a.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-23528-8_5.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-23528-8_5.pdf
https://classifier-calibration.github.io/assets/slides/clacal_tutorial_ecmlpkdd_2020_evaluation.pdf
https://colab.research.google.com/drive/1mqDVJICMBg2eoIr2VPaDjQFUzlDT3grc?usp=sharing

Visual Analytics Systems

Calibration
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Xenopoulos et. al. (2022)
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Parameters Matter!
]

Bins: Number of discrete bins
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Subtle parameter changes have big impacts

[
Conventional Reliability Diagrams
1.0 «vavv 8 bins . .
10 bine Using 10 bins |
Sl suggests the model is
miscalibrated for
206 predictions in the 0.6-
: 0.8 range.
S 0.4
g But, using 8 bins
o indicates a fairly
A calibrated model.
%0 0.2 0.4 0.6 0.8 1.0
Mean Predicted Probability (Confidence)
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Learned reliability diagrams Jlearn the
relationship between predictions and outcomes

Conventional Reliability Diagrams Learned Reliability Diagram
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Xenopoulos et. al. (2022)
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Recap: Model Assessment

Analyzing model performance is a critical task in a machine learning workflow.

Visualization is useful for understanding context and conveying performance to
stakeholders.

Many classical, static visualization techniques are now benefiting from reworked visual
representations and interactivity.
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Model understanding
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Why Model Interpretation & Explanation?

Human Factors in Model Interpretability: Industry Practices,
Challenges, and Needs

SUNGSOO RAY HONG, New York University, USA
JESSICA HULLMAN, Northwestern University, USA
ENRICO BERTINI, New York University, USA

Model Validation and Improvement

As the use of machine learning (ML) models in product and data-driven d king pro-
cesses became pervasive in many domains, people’s focus on building a well-performing model has increas-
ingly shifted to understanding how their model works. While scholarly interest in model interpretability has
grown rapidly in research communities like HCI, ML, and beyond, little is known about how practitioners
perceive and aim to provide interpretability in the context of their existing workflows. This lack of under-
standing of interpretability as practiced may prevent interpretability research from addressing important
needs, or lead to unrealistic solutions. To bridge this gap, we conducted 22 semi-structured interviews with
industry practitioners to understand how they conceive of and design for interpretability while they plan,
build, and use their models. Based on a qualitative analysis of our results, we differentiate interpretability
roles, processes, goals and strategies as they exist within organizations making heavy use of ML models. The
characterization of interpretability work that emerges from our analysis suggests that model interpretability
frequently involves cooperation and mental model comparison between people in different roles, often aimed
at building trust not only between people and models but also between people within the organization. We
present implications for design that discuss gaps between the challenges that

face in their practice and approaches proposed in the literature, highlighting possible research directions that
can better address real-world needs.

Decision-Making and Knowledge Discover
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How Do We Interpret Model Behavior?

Methods for machine learning model interpretation can be classified according
to various criteria:

White-box / Intrinsic interpretability: Machine learning models that are
considered interpretable due to their simple structure, such as short decision
trees or sparse linear models. Interpretability is gained by explaining the
internal structure of the model.

Black-box / Post-hoc interpretability: Machine learning models that are hard
to gain a comprehensive understanding of their inner working (e.g., deep
neural networks) are considered black boxes. Interpretability is galned by
explaining the model behavior after training.
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Generalized Additive
Models

White-Box Model
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Generalized Additive Models (GAMs)

Generalized additive models extend standard linear models by allowing
non-linear functions of each of the variables.

p
yi = [Po+ ij(i?i’ij) + €;
j=1

5{) T fl(i’ﬂ) + f2(il’?~;:2) + - " T fp(ﬂ_’?ip) =+ €;.
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Generalized Additive Models (GAMs)

Generalized additive models extend standard linear models by allowing
non-linear functions of each of the variables.

P
yi = [Po+ ij(i?i’ij) + €;
71=1
= Bo+ fi(win) + fa(@i2) + - + fp(Tip) + €.
\—\
Shape Functions
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Generalized Additive Models (GAMs): An Example

Wage = f(year, age, education) = b, + f,(year) + f,(age) + f;(education)

Ji(year)
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Generalized Additive Models (GAMs):
Pros and Cons

Pros Cons

GAMs are restricted to be additive. With many

GAMs allow us to fit a non-linear f; to each X, variables, important interactions can be missed
easily.

The non-linear fits can potentially lead to better
predictions.

Because the model is additive, we can examine
the effect of each XJ- on Y for each observation.
This is useful for visualization.
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Explainable Boosting Machines

I—
However, as with linear regression,

E we can manually add interaction terms
9 y — B 0 ‘ f] XL ] to the GAM model by including
additional predictors of the form X; x

X, , which necessitates shape function
fjk(Xj , X,) , into the model.

g(Ely]) = Bo + Z fi(zs) + Z fi: (i, x5)
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Explainable Boosting Machines in Practice

pandas pd
sklearn.model_selection train_test_split

interpret.glassbox ExplainableBoostingClassifier
interpret show

df = pd.read_csv(...)

label = df.columns[-1]
X = df[train_cols]
y = df[label]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

ebm = ExplainableBoostingClassifier()
ebm.fit(X_train, y_train)

Fabio Miranda | CS524: Big Data Visualization & Visual Analytics
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Explainable Boosting Machines in Practice

pandas pd
sklearn.model selection train_test split

interpret.glassbox ExplainableBoostingClassifier
interpret show EBM L
Ink

df = pd.read_csv(...)

interpret.ml

label = df.columns[-1]
X = df[train_cols]
y = df[label]

X_train, X_test, y_train, y_test = train_test_split(X, y, test _size=0.20)

ebm = ExplainableBoostingClassifier()
ebm.fit(X_train, y_train)
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Visualizing EBMs (or GAMs)

Age
]
ebm_global = ebm.explain_global()
1 show(ebm_global)
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Visualizing EBMs (or GAMs)

WorkClass
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Visualizing EBMs (or GAMs)

PrEdiCtEd { }EUK} ﬂ544 | Actual [ {ZSUK}: 0356 ebm_local = ebm.explain_local(X_test[:5], y_test[:5])

show(ebm_Tlocal)
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Gamut
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GAM Changer

GAM CHANGER Aign ML Models with Human Knowledge
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GAM Changer
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Black Box Methods
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When to use black-box explanation
methods?

Oftentimes, complex model architectures obfuscate the internal logic of
the model (e.g., neural networks, support vector machines, etc.)

In these cases, we turn to “black-box” explanation methods. These

methods are gaining significant popularity among machine learning
practitioners.

Fabio Miranda | CS524: Big Data Visualization & Visual Analytics

@ compuTER SCIENCE




Locally Interpretable Model Explanations (LIME)

“Why Should | Trust You?”
Explaining the Predictions of Any Classifier

LIME is a popular technique to produce /oca

Carlos Guestrin
University of Washington
Seattle, WA 98105, USA
guestrin@cs.uw.edu

Marco Tulio Ribeiro
University of Washington
Seattle, WA 98105, USA
marcotcr@cs.uw.edu

Sameer Singh
University of Washington
Seattle, WA 98105, USA
sameer@cs.uw.edu

ABSTRACT

Despite widespread adoption, machine learning models re-
main mostly black boxes. Understanding the reasons behind
predictions is, however, quite important in assessing trust,
which is fundamental if one plans to take action based on a
prediction, or when choosing whether to deploy a new model
Such understanding also provides insights into the model,
which can be used to transform an untrustworthy model or
prediction into a trustworthy one.

In this work, we propose LIME, a novel explanation tech-
nique that explains the predictions of any classifier in an in-
terpretable and faithful manner, by learning an interpretable
model locally around the prediction. We also propose a
method to explain models by presenting representative indi-
vidual predictions and their explanations in a non-redundant
way, framing the task as a submodular optimization prob-
lem. We demonstrate the flexibility of these methods by
explaining different models for text (e.g. random forests)
and image classification (e.g. neural networks). We show the
utility of explanations via novel experiments, both simulated
and with human subjects, on various scenarios that require
trust: deciding if one should trust a prediction, choosing
between models, improving an untrustworthy classifier, and
identifying why a classifier should not be trusted.

1. INTRODUCTION

Machine learning is at the core of many recent advances in
science and technology. Unfortunately, the important role
of humans is an oft-overlooked aspect in the field. Whether
humans are directly using machine learning classifiers as tools,
or are deploying models within other products, a vital concern
remains: if the users do not trust a model or a prediction,
they will not use it. It is important to differentiate between
two different, (but related) definitions of trust: (1) trusting a
prediction, i.e. whether a user trusts an individual prediction
sufficiently to take some action based on it, and (2) trusting
a model, i.e. whether the user trusts a model to behave in
reasonable ways if deployed. Both are directly impacted by

Permission to make digital or hard copies of ll or part of this work for personal or
classroom use s granted without fee provided that copics are not made or distributed

on the firs page. Copyrights for components of this work owned by others than the

and/ora fee. Request permissions from permissions @3cm.org.
KDD 2016 San Francisco, CA, USA

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 975.1-4503-4232-216/08... $15.00

DO http://dx.doi.org/10.1145/2939672.2939778

how much the human understands a model’s behaviour, as
opposed to seeing it as a black box.

Determining trust in individual predictions is an important
problem when the model is used for decision making. When
using machine learning for medical diagnosis [6] or terrorism
detection, for example, predictions cannot be acted upon on
blind faith, as the consequences may be catastrophic.

Apart from trusting individual predictions, there is also a
need to evaluate the model as a whole before deploying it “in
the wild". To make this decision, users need to be confident
that the model will perform well on real-world data, according
to the metrics of interest. Currently, models are evaluated
using accuracy metrics on an available validation dataset.
However, real-world data s often significantly different, and
further, the evaluation metric may not be indicative of the
product’s goal. Inspecting individual predictions and their
explanations is a worthwhile solution, in addition to such
metrics. In this case, it is important to aid users by suggesting
which instances to inspect, especially for large datasets.

In this paper, we propose providing explanations for indi-
vidual predictions as a solution to the “trusting a prediction”
problem, and selecting multiple such predictions (and expla-
nations) as a solution to the “trusting the model” problem
Our main contributions are summarized as follows.

o LIME, an algorithm that can explain the predictions of any
classifier or regressor in a faithful way, by approximating
it locally with an interpretable model.

© SP-LIME, a method that selects a set of representative
instances with explanations to address the “trusting the
model” problem, via submodular optimization.

« Comprehensive evaluation with simulated and human sub-
jects, where we measure the impact of explanations on
trust and associated tasks. In our experiments, non-experts
using LIME are able to pick which classifier from a pair
generalizes better in the real world. Further, they are able
to greatly improve an untrustworthy classifier trained on
20 newsgroups, by doing feature engineering using LIME.
We also show how understanding the predictions of a neu-
ral network on images helps practitioners know when and
why they should not trust a model.

2. THE CASE FOR EXPLANATIONS

By “explaining a prediction”, we mean presenting textual or
visual artifacts that provide qualitative understanding of the
relationship between the instance’s components (e.g. words
in text, patches in an image) and the model’s prediction. We

Fabio Miranda | CS524: Big Data Visualization & Visual Analytics

explanations, which produces feature
attributions for a given observation.

LIME is applicable to many kinds of data,
including tabular, text and image.
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LIME

Problem: Complex models lack the ability to generate explanations for
iIndividual observations.

Idea: Use a surrogate model to estimate the local behavior of a model
using an interpretable model.
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LIME

LIME Framework

Select observation of interest.

Perturb dataset and generate predictions using black
box model.

Train an interpretable model (e.g., linear regression) on
the perturbed dataset.

Use weights of interpretable model to explain the
prediction.

Fabio Miranda | CS524: Big Data Visualization & Visual Analytics
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LIME

Prediction probabilities

edible [0.00

poisonous [ ]1.00

lime
lime.lime_tabular

explainer = lime.lime_tabular.LimeTabularExplainer(data, ...)

idx =

exp = explainer.explain_instance(data[idx], clf.predict_proba, ...

edible poisonous

odor=foul
026
gill-size=broad
0.13
stalk-surface-abo...
0.1
spore-print-color=...
0.08

stalk-surface-bel...
170.06
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Value

True

Feature

odor=foul
gill-size=broad True
stalk-surface-above-ring=silky True
True

spore-print-color=chocolate
stalk-surface-below-ring=silky True
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LIME for Text and Images

atheism christian

Prediction probabilities

atheism
christian

Text with highlighted words

From: johnchad @triton.unm §@#ll (jchadwic)

Subject: Another request for Darwin Fish
Organization: University of New Mexico, Albuquerque
Lines: 11

[ T TT——

Hello Gang,

[DESEE M8 been some notes recently asking where to obtain the
DARWIN fish.

This is the same question I i}l and I [f§§ not seen an answer on
the

net. If anyone has a contact please post on the net or email me.
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LIME: Pros and Cons

Pros Cons

Parameters are hard to tune.

&

JL
Generalized to any underlying black-box model.

~ - 5 A58
@ Simple to use and understand. Results can be unstable.
SEASYQ EA PRI
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SHapley Additive exPlanations

SHAP is another popular local explanation

Predictions
L] L] L
Scott M. Lundberg Su-In Lee -—
Paul G. Allen School of Computer Science Paul G. Allen School of Computer Science
University of Washington Department of Genome Sciences
Seattle, WA 98105 University of Washington
slund1@cs.washington.edu Seattle, WA 98105

suinleeCcs. washington. edu

Shapley values.

Understanding why a model makes a certain prediction can be as crucial as the
prediction’s accuracy in many applications. However, the highest accuracy for large
‘modern datasets is often achieved by complex models that even experts struggle to
interpret, such as ensemble or deep leaming models, creating a tension between
accuracy and interpretability. In response, various methods have recently been
proposed to help users interpret the predictions of complex models, but it is often
unclear how these methods are related and when one method is preferable over
another. To address this problem, we present a unified framework for interpreting
predictions, SHAP (SHapley Additi ations). SHAP assigns each feature
an importance value for a particular prediction. Its novel components include: (1)
the identification of a new class of additive feature importance measures, and (2)
theoretical results showing there is a unique solution in this class with a set of
desirable propertics. The new class unifies six existing methods, notable because
several recent methods in the class lack the proposed desirable properties. Based
on insights from this unification, we present new methods that show improved
computational performance and/or better consistency with human intuition than
previous approaches.

The SHAP Python library contains rich

‘The ability to correctly interpret a prediction model’s output is extremely important. It engenders
i wust, into how a model may be

of the process being modeled. In some applications, simple models (e.g., linear models) are often

preferred for their case of interpretation, even if they may be less accurate than complex ones.

] [] ] ngugn
However, the growing availability of big data has increased the benefits of using complex models, so
bringing to the forefront the trade-off between accuracy and interpretability of a model’s output. A
wide variety of different methods have been recently proposed to address this issue [5, 8,9, 3, 4, 1]. n

But an understanding of how these methods relate and when one method is preferable to another is
still lacking

Here, we present a novel unified approach to interpreting model predictions.! Our approach leads to
three potentially surprising results that bring clarity to the growing space of methods:

1. We introduce the perspective of viewing any explanation of a model’s prediction as a model itself,
‘which we term the explanation model. This lets us define the class of additive feature attribution
‘methods (Section 2), which unifies six current methods.

"https://github. con/slundberg/shap

315t Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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SHAP Basics

SHAP’s goal is to assign contribution for output f(x) for each feature.
Each feature in the model represents a player in a game.

When a feature has “joined the game”, then we consider the value of that
feature known.
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Relationship between SHAP and PDP’s
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Relationship between SHAP and PDP’s
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Sum(SHAP Values) = f(x) - E(f(X))

fx) = 2.846

6.237 = MedInc

34.01 = Latitude
—118.03 = Longitude
10 = HouseAge
6.416 = AveRooms —-0.11 .
2975 = Population ' +0.07
1.018 = AveBedrms ~0.04 ‘
2.922 = AveOccup ’ +0.01

125 150 175 2.00 225 250 275  3.00
E[AX)] =2.215
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Visualizing
SHAP Values
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SHAP Force Plot
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SHAP Force Plot

[
[9]: shap.force_plot(explainer.expected_value, shap_values[:1000,:]1, X_display.iloc[:1000,:1)
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SHAP Summary Plot

[9]: shap.summary_plot(shap_values, X)
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SHAP Dependence Plot

[11]: for name in X_train.columns:

shap.dependence_plot(name, shap_values, X, display_features=X_display)
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SHAP: Pros and Cons

Pros Cons
JL
Generalized to any underlying black-box model. @f KernelSHAP can be very slow.
. . Strong visualization capabilities. 1/ Does not account for feature correlation.

Theoretical foundation.
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Recap: Model Understanding

The ability to interpret models and explain their predictions is an increasing need for many
practitioners.

Many libraries now contain the ability to visualize many aspects of model interpretability,
oftentimes in interactive formats.

Popular methods like LIME & SHAP contain various pitfalls that end users need to consider.
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