
Fabio Miranda | CS425: Computer Graphics I

Curves and Surfaces
CS425: Computer Graphics I

Fabio Miranda
https://fmiranda.me

https://fmiranda.me/


Fabio Miranda | CS425: Computer Graphics I

• Types of curves and surfaces:
• Explicit
• Implicit
• Parametric
• Bézier curves

• Modeling and approximations

Overview

2



Fabio Miranda | CS425: Computer Graphics I

How to model shapes?

From: Delcam Plc.



Fabio Miranda | CS425: Computer Graphics I

• Until now: flat entitles such as lines and polygons.
• Flat entities fit well with graphics hardware and the graphics 

pipeline: texture mapping, hidden surface removal, etc.
• Mathematically simple.

• World is not composed of flat entities:
• Need curves and curved surfaces.
• May only need them at the application level.
• We can still render curves and curved surfaces approximating 

them with flat primitives.

Beyond flatland



Fabio Miranda | CS425: Computer Graphics I

• We need mathematical concepts to characterize the desired curve 
properties.

• Curve geometry can help with designing user interfaces for curve 
creation and editing.

• Curves and surfaces are objects like meshes, but are expressed in 
terms of mathematical functions (rather than a series of discrete 
primitives).
• Less memory at modelling time.
• More work at rendering time.

Modeling curves



Fabio Miranda | CS425: Computer Graphics I

Modeling in 2D

From: Daniele Panozzo - NYU



Fabio Miranda | CS425: Computer Graphics I

Modeling in 3D

From: Daniele Panozzo - NYU



Fabio Miranda | CS425: Computer Graphics I

Modeling curves

data points
approximating curve

interpolating data point



Fabio Miranda | CS425: Computer Graphics I

• Different ways to represent curves and surfaces.
• Representation goal:

• Stable
• Smooth
• Easy to evaluate
• Interpolate?
• Derivatives?

Good representations



Fabio Miranda | CS425: Computer Graphics I

• Most familiar form of curve in 2D:
𝑦𝑦 = 𝑓𝑓(𝑥𝑥)

• Cannot represent all curves:
• Vertical lines
• Circles

• Extension to 3D:
𝑦𝑦 = 𝑓𝑓 𝑥𝑥 , 𝑧𝑧 = 𝑔𝑔 𝑥𝑥

𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦) (defines a surface)

Explicit representation



Fabio Miranda | CS425: Computer Graphics I

• Two dimensional curves:
𝑓𝑓(𝑥𝑥,𝑦𝑦) = 0

• Three dimensional surfaces:
𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0

• An implicit curve or surface is the set of zeros of a function of 2 or 3 
variables.

• Implicit: equation is not solved for 𝑥𝑥 or 𝑦𝑦 or 𝑧𝑧.

Implicit representation



Fabio Miranda | CS425: Computer Graphics I

• Plane:
𝑥𝑥 + 𝑦𝑦 − 3𝑧𝑧 + 1 = 0

• Sphere:
𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 1 = 0

• Torus:
(𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 + 𝑅𝑅2 − 𝑎𝑎2)2−4𝑅𝑅2 𝑥𝑥2 + 𝑦𝑦2 = 0

Implicit representation



Fabio Miranda | CS425: Computer Graphics I

• Function 𝑓𝑓 is essentially a membership function that divides space into 
points that belong to the curve or surface and those that do not.
• Take 𝑥𝑥,𝑦𝑦 pair and evaluate 𝑓𝑓 to determine whether this point lies 

on the curve.
• No analytical way to find a value 𝑦𝑦 on the curve that corresponds to a 

given 𝑥𝑥 (or vice versa).
• Represents all lines and circles.

Implicit representation



Fabio Miranda | CS425: Computer Graphics I

𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 0
𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 − 9 = 0

0,0,0 → 𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
3,0,0 → 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
0,3,0 → 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
0,0,3 → 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Implicit representation



Fabio Miranda | CS425: Computer Graphics I

• Surface defined by an implicit equation 𝑓𝑓 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 0 where 𝑓𝑓 is a 
polynomial in three indeterminates, with real coefficients.

�
𝑖𝑖

�
𝑗𝑗

�
𝑘𝑘

𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗𝑧𝑧𝑘𝑘 = 0

• Quadric surfaces: each term can have degree up to 2 (spheres, disks, 
cones).

Algebraic surface



Fabio Miranda | CS425: Computer Graphics I

• Separate equation for each spatial variable:
𝑥𝑥 = 𝑥𝑥 𝑢𝑢
𝑦𝑦 = 𝑦𝑦 𝑢𝑢
𝑧𝑧 = 𝑧𝑧(𝑢𝑢)

• Each spatial variable on the curve is written in terms of an 
independent variable, or parameter, 𝑢𝑢.

• Useful representation (same in two and three dimensions).
𝑝𝑝 𝑢𝑢 = 𝑥𝑥 𝑢𝑢 ,𝑦𝑦 𝑢𝑢 , 𝑧𝑧(𝑢𝑢) 𝑇𝑇

Parametric curves



Fabio Miranda | CS425: Computer Graphics I

• For 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚, we trace out a curve in two or thee dimensions:

Parametric curves

𝒑𝒑(𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚)
𝒑𝒑(𝑢𝑢𝑚𝑚𝑎𝑎𝑎𝑎)



Fabio Miranda | CS425: Computer Graphics I

• Line connecting two points 𝑝𝑝0 and 𝑝𝑝1:
𝑝𝑝 𝑢𝑢 = 𝑝𝑝0 + 𝑢𝑢 𝑝𝑝1 − 𝑝𝑝0 = 1 − 𝑢𝑢 𝑝𝑝0 + 𝑢𝑢𝑝𝑝1

• Parameter 𝑢𝑢 simply controls where on the line the point 𝑝𝑝 𝑢𝑢 will land.

Parametric lines

𝐩𝐩(0) = 𝐩𝐩0

𝐩𝐩(1) = 𝐩𝐩1



Fabio Miranda | CS425: Computer Graphics I

• When interpolating between only two points, linear interpolation might 
be enough. However, what if we have more points on a path?
• Sudden changes at the points (joints) become unacceptable.

Parametric lines



Fabio Miranda | CS425: Computer Graphics I

• Common form of parametric curves.
• Addresses discontinuous changes by applying repeated linear 

interpolations.
• Applications:

• Animation: character movement
• Games: camera movement
• Graphics: model smooth curves
• Fonts: PostScript, TrueType

Bézier curves



Fabio Miranda | CS425: Computer Graphics I

• PostScript, instead of 
requiring bitmaps to 
be generated for each 
style and size of 
typeface, generates 
fonts of any size and 
shape from Bézier
curves.

Bézier curves

John Warnock



Fabio Miranda | CS425: Computer Graphics I

Bézier curves
• Three control points: 
𝑎𝑎, 𝑏𝑏, 𝑐𝑐

• What is the point on the 
curve for the parameter 
𝑡𝑡 = 1/3?
• Linearly interpolate 

between 𝑎𝑎 and 𝑏𝑏 to get 
𝑑𝑑.

• Linearly interpolate 
between 𝑏𝑏 and 𝑐𝑐 to get 𝑒𝑒.

• Linearly interpolate 
between 𝑑𝑑 and 𝑒𝑒 to get 
final point 𝑝𝑝 1

3
= 𝑓𝑓.

𝑎𝑎

𝐛𝐛

𝑐𝑐𝑡𝑡 = 1/3
𝐝𝐝

𝐞𝐞

𝑓𝑓 = 𝑝𝑝(
1
3

)



Fabio Miranda | CS425: Computer Graphics I

• Relationship:
𝑝𝑝 𝑡𝑡 = 1 − 𝑡𝑡 𝐝𝐝 + 𝑡𝑡𝐞𝐞

𝑝𝑝 𝑡𝑡 = 1 − 𝑡𝑡 1 − 𝑡𝑡 𝐚𝐚 + 𝑡𝑡𝐛𝐛 + 𝑡𝑡 1 − 𝑡𝑡 𝐛𝐛 + 𝑡𝑡𝐜𝐜
𝑝𝑝 𝑡𝑡 = 1 − 𝑡𝑡 2𝐚𝐚 + 2 1 − 𝑡𝑡 𝑡𝑡𝐛𝐛 + 𝑡𝑡2𝐜𝐜

• Parabola since the maximum degree of 𝑡𝑡 is two.
• Given 𝑛𝑛 + 1 control points, the degree of the curve is 𝑛𝑛.

Bézier curves



Fabio Miranda | CS425: Computer Graphics I

• The same approach can be used in 
3D: surface defined by a set of points 
in 3D.

• Superior to triangle meshes as a 
representation of smooth surfaces.

Bézier patches

Ed Catmull’s Gumbo model, 
composed from patches



Fabio Miranda | CS425: Computer Graphics I

• Instead of using one parameter 𝑡𝑡, we now 
use two parameters (𝑢𝑢, 𝑣𝑣).

• Using 𝑢𝑢 to linearly interpolate between 𝐚𝐚 and 
𝐛𝐛, and 𝐜𝐜 and 𝐝𝐝:

𝐞𝐞 = 1 − 𝑢𝑢 𝐚𝐚 + 𝑢𝑢𝐛𝐛
𝐟𝐟 = 1 − 𝑢𝑢 𝐜𝐜 + 𝑢𝑢𝐝𝐝

• Linearly interpolated points 𝑒𝑒 and 𝑓𝑓 are then 
interpolated in the other direction, using 𝑣𝑣.

𝑝𝑝 𝑢𝑢, 𝑣𝑣 = 1 − 𝑣𝑣 𝐞𝐞 + 𝑣𝑣𝐟𝐟
𝑝𝑝 𝑢𝑢,𝑣𝑣 = 1 − 𝑢𝑢 1 − 𝑣𝑣 𝐚𝐚 + 𝑢𝑢 1 − 𝑣𝑣 𝐛𝐛 + 1 − 𝑢𝑢 𝑣𝑣𝐜𝐜 + 𝑢𝑢𝑢𝑢𝐝𝐝

Bézier patches


