Curves and Surfaces

CS425: Computer Graphics I

Fabio Miranda https://fmiranda.me

Overview

- Types of curves and surfaces:
	- Explicit
	- Implicit
	- Parametric
	- Bézier curves
- Modeling and approximations

How to model shapes?

From: Delcam Plc.

Beyond flatland

- Until now: flat entitles such as lines and polygons.
	- Flat entities fit well with graphics hardware and the graphics pipeline: texture mapping, hidden surface removal, etc.
	- Mathematically simple.
- World is not composed of flat entities:
	- Need curves and curved surfaces.
	- May only need them at the application level.
	- We can still render curves and curved surfaces approximating them with flat primitives.

Modeling curves

- We need mathematical concepts to characterize the desired curve properties.
- Curve geometry can help with designing user interfaces for curve creation and editing.
- Curves and surfaces are objects like meshes, but are expressed in terms of mathematical functions (rather than a series of discrete primitives).
	- Less memory at modelling time.
	- More work at rendering time.

Modeling in 2D

From: Daniele Panozzo - NYU

Modeling in 3D

From: Daniele Panozzo - NYU

UIG COMPUTER SCIENCE

Good representations

- Different ways to represent curves and surfaces.
- Representation goal:
	- Stable
	- Smooth
	- Easy to evaluate
	- Interpolate?
	- Derivatives?

- Most familiar form of curve in 2D: $y = f(x)$
- Cannot represent all curves:
	- Vertical lines
	- Circles
- Extension to 3D:

$$
y = f(x), z = g(x)
$$

$$
z = f(x, y)
$$
 (defines a surface)

• Two dimensional curves:

$$
f(x,y)=0
$$

• Three dimensional surfaces:

$$
f(x,y,z)=0
$$

- An implicit curve or surface is the set of zeros of a function of 2 or 3 variables.
- *Implicit:* equation is not solved for x or y or z .

• Plane:

$$
x+y-3z+1=0
$$

• Sphere:

$$
x^2 + y^2 + z^2 - 1 = 0
$$

• Torus:

$$
(x2 + y2 + z2 + R2 – a2)2 – 4R2(x2 + y2) = 0
$$

- Function f is essentially a membership function that divides space into points that belong to the curve or surface and those that do not.
	- Take x, y pair and evaluate f to determine whether this point lies on the curve.
- No analytical way to find a value y on the curve that corresponds to a given x (or vice versa).
- Represents all lines and circles.

 $f(x, y, z) = 0$ $x^2 + y^2 + z^2 - 9 = 0$ $(0,0,0) \rightarrow not$ on surface $(3,0,0) \rightarrow on$ surface $(0,3,0) \rightarrow on$ surface $(0,0,3) \rightarrow on$ surface

• Surface defined by an implicit equation $f(x, y, z) = 0$ where f is a polynomial in three indeterminates, with real coefficients.

$$
\sum_{i} \sum_{j} \sum_{k} x^{i} y^{j} z^{k} = 0
$$

• Quadric surfaces: each term can have degree up to 2 (spheres, disks, cones).

Parametric curves

• Separate equation for each spatial variable:

```
x = x(u)y = y(u)z = z(u)
```
- Each spatial variable on the curve is written in terms of an independent variable, or parameter, u .
- Useful representation (same in two and three dimensions). $p(u) = [x(u), y(u), z(u)]^T$

Parametric curves

• For $u_{min} \le u \le u_{max}$, we trace out a curve in two or thee dimensions:

Parametric lines

• Line connecting two points p_0 and p_1 : $p(u) = p_0 + u(p_1 - p_0) = (1 - u)p_0 + up_1$

$$
\mathbf{p}(1) = \mathbf{p}_1
$$
\n
$$
\mathbf{p}(0) = \mathbf{p}_0
$$

• Parameter u simply controls where on the line the point $p(u)$ will land.

Parametric lines

- When interpolating between only two points, linear interpolation might be enough. However, what if we have more points on a path?
	- Sudden changes at the points (joints) become unacceptable.

Bézier curves

- Common form of parametric curves.
- Addresses discontinuous changes by applying repeated linear interpolations.
- Applications:
	- Animation: character movement
	- Games: camera movement
	- Graphics: model smooth curves
	- Fonts: PostScript, TrueType

Bézier curves

• PostScript, instead of requiring bitmaps to be generated for each style and size of typeface, generates fonts of any size and shape from Bézier curves.

- Three control points: a, b, c
- What is the point on the curve for the parameter $t = 1/3$?
• Linearly interpolate
	- between a and b to get \overline{d} .
	- Linearly interpolate between b and c to get e .
	- Linearly interpolate between d and e to get final point $p\left(\frac{1}{3}\right) = f$.

Bézier curves

• Relationship:

$$
p(t) = (1 - t)\mathbf{d} + t\mathbf{e}
$$

$$
p(t) = (1 - t)[(1 - t)\mathbf{a} + t\mathbf{b}] + t[(1 - t)\mathbf{b} + t\mathbf{c}]
$$

$$
p(t) = (1 - t)^{2}\mathbf{a} + 2(1 - t)t\mathbf{b} + t^{2}\mathbf{c}
$$

- Parabola since the maximum degree of t is two.
- Given $n + 1$ control points, the degree of the curve is n.

Bézier patches

- The same approach can be used in 3D: surface defined by a set of points in 3D.
- Superior to triangle meshes as a representation of smooth surfaces.

Ed Catmull's Gumbo model, composed from patches**UIG COMPUTER SCIENCE**

Bézier patches

- Instead of using one parameter t , we now use two parameters (u, v) .
- Using u to linearly interpolate between a and **, and** $**c**$ **and** $**d**$ **:**

 $\mathbf{e} = (1 - u)\mathbf{a} + u\mathbf{b}$ $f = (1 - u)c + ud$

Linearly interpolated points e and f are then interpolated in the other direction, using v . $p(u, v) = (1 - v)\mathbf{e} + v\mathbf{f}$ $p(u, v) = (1 - u)(1 - v)a + u(1 - v)b + (1 - u)v**c** + uvd$

