Rasterization and Fragment

Processing
CS 425: Computer Graphics 1

@ compuTER scIENCE

Rasterization

Application Graphics System
Program
. Geometry) Fragment
Modeling) Rasterization : Framebuffer
Processing) Processing

Fabio Miranda | CS425: Computer Graphics | @ COMPUTER SCIENCE 2

Rasterization

e Process of converting the vertices that are output from the clipping stage to
fragments.
e Fragments are potential pixels.

Clipped object in vertex representation Fragments of the rasterized object

Fabio Miranda | CS425: Computer Graphics | @ COMPUTER SCIENCE °

Samples

Fabio Miranda | CS425: Computer Graphics | : COMPUTER SCIENCE

Image Copyright: Andrea Tagli

Rasterization: Lines

DDA algorithm: Idea

(X5 ¥)
y=mx+h 4

Yier =M (X + Ax) + h
Ay
Yirr = MX; + h + mAX =y, + mAxX

If we set Ax =1, then Ax
(x‘]’ Y‘]): -

Yi+1 = yi +m

Fabio Miranda | CS425: Computer Graphics | @ COMPUTER SCIENCE

Rasterization: Lines

DDA algorithm . C

for (ix = X1; IX <= X2; ++1x) {
y+=m;
writePixel(x, round(y), line_ color);

Fabio Miranda | CS425: Computer Graphics | @ COMPUTER SCIENCE

Rasterization: Lines

DDA algorithm

Assumes 0 <=m <=1

For each x, find best y.

For slopes greater than 1 we can swap the roles of x and .

Approximating m by rounding it over many iterations can induce error and

result in the rasterized line being off the actual line.

e Has floating point calculations and rounding function which are
computationally expensive.

@ compuTER scIENCE

Rasterization: Lines

Bresenham’s Algorithm: ()

We assume a line with a slope m such

that: 0 <m =<1 f\TE A

y=mx+h _
// E M

y=(dy/dx)x+h o
(X ¥,)

@ compuTER scIENCE

Rasterization: Bresenham’s Algorithm

In the implicit form,
F(x, y) = Xx.dy -y.dx + h.dx =0 S
Or,F(x,y)=Ax+By+C=0
o0
A =dy, B = -dx, C = h.dx /’
//—)
F(x, y) = 0 on the line, < 0 above the ® A A
line, and > 0 below the line - N N
Xp,yp

@ compuTER scIENCE

Rasterization: Bresenham’s Algorithm

At the current iteration, the pixel at (x,, y,) is

chosen. Now how to choose the next pixel? an

The choice is between pixels E and NE.

Compute F(M), F(M) is the decisi lue ‘d’ ON’E P,
pute F(M), F(M) is the decision value ——/,
d=A (x+ 1)+ B (y,+ %)+ C "

o —

If d > 0, choose NE, otherwise choose E (X, ¥)

@ compuTER scIENCE

Rasterization: Filling

Primitive assembly information is
utilized for filling.

Inside-out testing is done to determine
what pixels are part of the polygon.

e Crossing or odd-even test.

Fabio Miranda | CS425: Computer Graphics | @ COMPUTER SCIENCE

Hidden Surface Removal

Application Graphics System
Program
, Geometry . Fragment
Modeling) Rasterization : Framebuffer
Processing Processing

Fabio Miranda | CS425: Computer Graphics | @ COMPUTER SCIENCE

Hidden Surface Removal: The z-Buffer algorithm

A separate buffer to hold the depth
information.

Initialized to maximum depth value from
center of projection. Color buffer to the
background color.

lteratively rasterize polygons and
simultaneously fill the z-buffer.

A

i I

g

N

@ compuTER scIENCE

Hidden Surface Removal: The z-Buffer algorithm

Compare depth of incoming fragment with
value in z-buffer.

Depth,.,, > Depth,, «, We have already
rasterized a fragment that is closer to the
viewer.

Otherwise the incoming fragment is placed in
the color buffer and the z-buffer is updated.

A

i I

g

N

@ compuTER scIENCE

Transparency

* Important to denote relationships among objects in a scene.
* One of the five major challenges in interactive rendering [Andersson,

If not all fragments are opaque,

how can we blend them?
[Maule et al., 2012]

Fabio Miranda | CS425: Computer Graphics | @ COMPUTER SCIENCE

Transparency

- Blend fragment color and opacity such that the resulting pixel color is:
c=cp+(1—ay)..[c;+ (1 —az)lc; + (1 —ag)col]
« Order dependent: final pixel color depends of the fragment color.

Y
& W Correct result, sorting
fragments.

Incorrect result as fragments
are generated and blended in
‘random’ order.

ATI Tech Demo

Fabio Miranda | CS425: Computer Graphics | @ COMPUTER SCIENCE

OpenGL pipeline

e
: o
{ vertices }
and attributes o
(colors, normals)
Geometric
Transformations

1] |
-: 111
n 11
n]
Depth Test Lighting rycentric Interpolation

Fabio Miranda | CS425: Computer Graphics | COMPUTER SCIENCE

